LilyPond

The music typesetter

The LilyPond development team
Copyright (©) 1999-2007 by the authors

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

(For LilyPond version 2.10.33)

Table of Contents

Preface ... e 1
1 Introductioncciuuiiiiinnnnnnnnnn. 2
1.1 ENgraving 2
1.2 Automated engravingo o 3
1.3 What symbols to engrave? 4
1.4 Music representation. 6
1.5 Example applications 7
1.6 About this manual 8
2 Tutorial e 11
2.1 First SteDS . oo vt 11
2.1.1 Compiling a file. 11
2.1.2 Simple notation. 12
2.1.3 Working on text files. ... 16
2.1.4 How to read the tutorial.......... 16
2.2 Single staff notation 17
2.2.1 Relative note names. 17
2.2.2 Accidentals and key signatures.............. 17
2.2.3 Tiesand slurst 19
2.2.4 Articulation and dynamics. 20
2.2.5 Automatic and manual beams 21
2.2.6 Advanced rhythmic commands............ i 21
2.3 Multiple notes at OnNCet 22
2.3.1 Music expressions explained 22
2.3.2 Multiple Staveso 24
2.3.3 Pilano staves. 25
2.3.4 Single staff polyphony 26
2.3.5 Combining notes into chords.......... 27
2.4 SOMIES . ettt 27
2.4.1 Printing Lyricso oo 27
242 Alead sheet.o 28
2.5 Final touches 30
2.5.1 Version nUMDbETo 30
2.5.2 Adding tit1eso oot 30
2.5.3 Absolute note NamMeS 30
2.5.4 Organizing pieces with identifiers....... 32
2.5.5 After the tutorial 33
2.5.6 How toread the manual........ 33

3 Putting it alltogether................ 34
3.1 Extending the templates 34
3.2 How LilyPond files work 37
3.3 Score is a single musical eXpression i 38

3.4 An orchestral part 40

4 Working on LilyPond projects 42
4.1 Suggestions for writing LilyPond files 42
4.1.1 General Suggestions 42
4.1.2 Typesetting existing mMuSIC.ttt 43
4.1.3 Large projects 43
4.2 Saving typing with identifiers and functions 43
4.3 Style sheets 45
4.4 Updating old files 48
4.5 Troubleshooting (taking it all apart) 49
4.6 Minimal examples 49
5 Tweakingoutput............ooieiiiiiiiiininnn.. 51
5.1 Moving 0bjectsot 51
5.2 Fixing overlapping notation 53
5.3 Common tWeaks. 54
5.4 Default filles.o 55
5.5 Fitting music onto fewer pages 56
5.6 Advanced tweaks with Scheme........ 57
5.7 Avoiding tweaks with slower processingiiiiineeiiiii... 58
6 Basicnotationttt 59
6.1 Pitches 29
6.1.1 Normal pitches 59
6.1.2 Accidentals. 60
6.1.3 Cautionary accidentals 61
6.1.4 MICTO tONES . . .ottt e 61
6.1.5 Note names in other languages 61
6.1.6 Relative 0ctaves 62
6.1.7 Octave check 63
6.1.8 TTANSPOSE . . o vttt et e 63
6.1.9 Rests ... 64
6.1, 10 SKIPS « o e ettt 65
6.2 Rhythms ... 66
6.2.1 Durationso 66
6.2.2 Augmentation dotS. 66
6.2.3 TUplets . ..o 67
6.2.4 Scaling durations i 68
6.2.5 Barcheck 68
6.2.6 Barnumber check 69
6.2.7 Automatic note splitting 69
6.3 Polyphony 70
6.3.1 CROTAS . . .ottt e 70
6.3.2 SBeINS . o ottt 70
6.3.3 Basic polyphony 70
6.3.4 Explicitly instantiating voices.......... ... i 71
6.3.5 Collision Resolution.......... ... 73
6.4 Staff notation 76
6.4.1 Clef. .o 76
6.4.2 Key signature 77
6.4.3 Time SIgNaturettt 78
6.4.4 Partial measures 79
6.4.5 Bar lines 80

6.4.6 Unmetered musSiC 82

6.4.7 System start delimiters............ ... o 82
6.4.8 Staff symbol. 84
6.4.9 Writing music in parallel 85
6.5 Connecting NOLES vttt et e 86
6.5. 1 THES o ottt 86
0.5.2 SIULS . oottt e e 88
6.5.3 Phrasing slurs 89
6.5.4 Laissez vibrer ties. 89
6.5.5 Automatic beams 90
6.5.6 Manual beams 90
6.5.7 GIace NOLES . ..ottt e e e e e e e 91
6.6 Expressive marks. 94
6.6.1 Articulations 94
6.6.2 Fingering instructions 96
6.6.3 Dynamics 98
6.6.4 Breath marks. 100
6.6.5 Trills .. o 100
6.6.6 GLSSANAOo et 101
6.6.7 ATPeGEIO . o o 101
6.6.8 Falls and doits. o 103
6.7 RepPeats ... o 103
6.7.1 Repeat types . ..o 103
6.7.2 Repeat syntaxot 103
6.7.3 Repeats and MIDIL. 105
6.7.4 Manual repeat commands 106
6.7.5 Tremolo repeatst 106
6.7.6 Tremolo subdivisSions. 107
6.7.7 Measure repeatsttt 107

7 Instrument-specific notation 109
7.1 Plano musiC.o 109
7.1.1 Automatic staff changes.......... 109
7.1.2 Manual staff switches 110
T.1.3 Pedals ... 110
7.1.4 Staff switch lines. 111
7.1.5 Cross staff stems. 112
7.2 Chord NAIIES. . ..ottt e e e 112
7.2.1 Introducing chord names 112
7.2.2 Chords MOde 113
7.2.3 Printing chord names 115
7.3 Vocal IUSIC. . ..o 118
7.3.1 Setting siIMple SONESttt 119
7.3.2 Entering lyrics.o 119
7.3.3 Hyphens and extenders. i 121
7.3.4 The Lyrics context 121
7.3.0 Melismata. ... 123
7.3.6 Another way of entering lyrics 123
7.3.7 Flexibility in placement 124
7.3.7.1 Lyrics to multiple notes of a melisma 124
T7.3.7.2 Divisi Iyrics. ..o 125
7.3.7.3 Switching the melody associated with a lyrics line 126
7.3.7.4 Specifying melismata within the lyrics 127
7.3.7.5 Lyrics independent of notes 127

7.3.8 Spacing lyricso 127

7.3.9 More about stanzas 129
7.3.9.1 Adding stanza numbers. 129
7.3.9.2 Adding dynamics marks 129
7.3.9.3 Adding SiNger Namesoiii i 130
7.3.9.4 Printing stanzas at theend 130
7.3.9.5 Printing stanzas at the end in multiple columns 133

T.3.10 Ambitus . ..o 136

7.3.11 Other vocal ISSUESot 137

7.4 Rhythmic music....... ... 137

7.4.1 Showing melody rhythms........ 137

7.4.2 Entering percussionuuiiit it 137

7.4.3 Percussion Stavest 138

T4.4 Ghost NOLES . ..o ot 140

.0 GUITAT . o o 141

7.5.1 String number indications 141

7.5.2 Tablatures basic 141

7.5.3 Non-guitar tablatures 142

7.5.4 Banjo tablatures....... ... 143

7.5.5 Fret diagrams 143

7.5.6 Right hand fingerings 144

7.5.7 Other guitar iSSUES. 145

7.6 Bagpipe . ..o 145
7.6.1 Bagpipe definitions 145
7.6.2 Bagpipe example 146

7.7 Ancient notation 147

7.7.1 Ancient note heads 148

7.7.2 Ancient accidentals 148

T.7.3 ANCIENt TESES . . oottt 149

T.7.4 Ancient clefs 149

T.7.5 Ancient flags 152

7.7.6 Ancient time Signatures ...t 152

7.7.7 Ancient articulations. 153

T.7.8 CUStOAES . o oot 154

T.7.9 DIVISIONES . . oottt e e e e 155

T.7.10 LAgabUTES. . oottt e e e 155
7.7.10.1 White mensural ligatures 156
7.7.10.2 Gregorian square neumes ligatures................... 157

7.7.11 Gregorian Chant contexts i 162

7.7.12 Mensural contexts 162

7.7.13 Musica ficta accidentals 163

T.7.14 Figured bass ... 164

7.8 Other instrument specific notation........... 166
7.8.1 Artificial harmonics (Strings)o 166

8 Advanced notation................... ittt 167

TR0 5 167

8. 1.1 Text SCIiptS . . oottt 167

8.1.2 Text SPANINETS . . o .ottt ettt e e e e 168

8.1.3 Text marks. 168

8.1.4 Text markupt 170

8.1.5 Nested SCOTES. ..o 174

8.1.6 Overview of text markup commands. 174

8.1.7 Font selection 182

8.1.8 New dynamic marks e 184

8.2 Preparing partst 184
8.2.1 Multi measure restSt 184
8.2.2 Metronome marks 186
8.2.3 Rehearsal marks....... ... 187
8.2.4 Bar numDbETSo 189
8.2.5 Instrument names. 190
8.2.6 Instrument transpositions 193
8.2.7 Ottava brackets. 193
8.2.8 Different editions from one source............ 194

8.3 Orchestral MUSIC 195
8.3.1 Automatic part combining. 195
8.3.2 Hiding staves 197
8.3.3 Quoting other voices 197
8.3.4 Formatting cue notes.o o 199
8.3.5 Aligning to cadenzas 200

8.4 Contemporary NOtAtIONttt 201
8.4.1 Polymetric notation......... ... 201
8.4.2 Time administration 203
8.4.3 Proportional notation 204
8.4.4 ClUSEEIS. . .ot t 205
8.4.5 Special noteheads 205
8.4.6 Feathered beams........ 206
8.4.7 Improvisation 206
8.4.8 Selecting notation font size 207

8.5 Educational Use 207
8.5.1 Balloon help. 207
8.5.2 Blank music sheet 208
8.5.3 Hidden notes 209
8.5.4 Shape note heads 209
8.5.5 Easy Notation note heads 209
8.5.6 Analysis brackets 210
8.5.7 Coloring 0bJeCts 210
8.5.8 Parentheses i 211
8.5.9 Grid INeso 212

9 Changingdefaults................ 213

9.1 Automatic NOLALION.ot 213
9.1.1 Automatic accidentals. 213
9.1.2 Setting automatic beam behavior 215

9.2 Interpretation contextso 218
9.2.1 Contexts explained. 218
9.2.2 Creating CONLEXtSottt e 219
9.2.3 Changing context properties on the fly 220
9.2.4 Modifying context plug-ins 222
9.2.5 Layout tunings within contexts 223
9.2.6 Changing context default settings............. 225
9.2.7 Defining new COntextsttt 226
9.2.8 Aligning CONtextSttt 227

9.3 The \override command 228
9.3.1 Constructing a tweak 228
9.3.2 Navigating the program reference 228
9.3.3 Layout interfaceso 229
9.3.4 Determining the grob property........ ... 230

9.3.5 Objects connected to the input 231

9.3.6 \set vS. \OVEITIAettt 232
9.3.7 Difficult tweaks 232
10 Non-musical notation..................., 234
10.1 Input files . ..o 234
10.1.1 File structure (introduction)............ i 234
10.1.2 File structure.o 234
10.1.3 A single mMusiC eXpressionttt 235
10.1.4 Multiple scores in a book 236
10.1.5 Extracting fragments of notation............ 237
10.1.6 Including LilyPond files 238
10.1.7 Text encodingt 238
10.2 Titles and headers.o 238
10.2.1 Creating titles. 238
10.2.2 Custom titles. 242
10.3 MIDI OUtpU . oo et 243
10.3.1 Creating MIDI files 243
10.3.2 MIDI block. . . oo 244
10.3.3 MIDI instrument namesttt 244
10.4 Displaying LilyPond notation 244
10.5 Skipping corrected musiC. 245
11 Spacing iSSUES .. covvt ittt ennnnnnnneeeeeeeennnns 246
11.1 Paper and Pagesottt e 246
1111 Paper Size. ...t 246
11.1.2 Page formatting 246
11.2 Music layout 250
11.2.1 Setting the staff size 250
11.2.2 Score layouto 251
11.3 Breaks ..o 251
11.3.1 Line breaking.o 251
11.3.2 Page breaking 252
11.3.3 Optimal page breaking i 253
11.3.4 Optimal page turningt 253
11.3.5 Explicit breaks 254
11.3.6 Using an extra voice for breaks 255
11.4 Vertical Spacing 257
11.4.1 Vertical spacing inside a system............. i, 257
11.4.2 Vertical spacing of piano staves 258
11.4.3 Vertical spacing between systems 258
11.4.4 Explicit staff and system positioning 259
11.4.5 Two-pass vertical Spacing i 265
11.5 Horizontal SPacingt 265
11.5.1 Horizontal spacing overviewot 266
11.5.2 NeW SPACING ATCA . . . oottt ettt e et e e e e e e e e e e e e e 267
11.5.3 Changing horizontal spacing................. 267
11.5.4 Line length.o 269

11.6 Displaying Spacingco ottt 270

12 Interfaces for programmers 271
12.1 Music functionst 271
12.1.1 Overview of music functions 271
12.1.2 Simple substitution functions 271
12.1.3 Paired substitution functions 273
12.1.4 Mathematics in functions. 273
12.1.5 Void functions. 274
12.1.6 Functions without arguments 274
12.2 Programmer interfaces. oo 274
12.2.1 Input variables and Scheme. 275
12.2.2 Internal music representation i 276
12.3 Building complicated functions........... 276
12.3.1 Displaying music eXpressionsuee et 276
12.3.2 MUSIC Propertiesot e e 277
12.3.3 Doubling a note with slurs (example)................. 278
12.3.4 Adding articulation to notes (example)oiiiii... 279
12.4 Markup programmer interface............... . . 281
12.4.1 Markup construction in Scheme............. 281
12.4.2 How markups work internally..........., 282
12.4.3 New markup command definition 282
12.5 Contexts for programmersttt 284
12.5.1 Context evaluation. 284
12.5.2 Running a function on all layout objects............ 284
12.6 Scheme procedures as properties.o 285
13 Running LilyPond 286
13.1 Invoking lilypond. 286
13.1.1 Command line options 286
13.1.2 Environment variables 289
13.2 Notes for the MacOS X app . ..ottt e et 289
13.3 Updating with convert-1y 290
134 Reporting bugs.o 292
13.5 EITOT MESSAZES . . . oo vttt et e e e e e 292
13.6 Editor SUPPOT . .. oot 293
13.7 Point and click. 293
14 1lilypond-book: Integrating text and music 295
14.1 An example of a musicological document 295
14.2 Integrating LaTEX and musicttt 298
14.3 Integrating Texinfo and music......... ... i 299
14.4 Integrating HTML and musico i 300
14.5 Integrating DocBook and music 301
Common CONVENTIONSottt et e e e e et e e e 301
Including a LilyPond file. 301
Including LilyPond code 301
Processing the DocBook document 301
14.6 Music fragment options. 301
14.7 Invoking 1i1lypond=-booK.ttt 303
14.8 Filename eXtensionsttt 305
14.9 Many quotes of a large SCOTeo ot 305
14.10 Inserting LilyPond output into OpenOffice.org................ 305

14.11 Inserting LilyPond output into other programs 305

15 Converting from other formats....................... 306
15.1 Invoking midi2lyt 306
15.2 Invoking etf21y ...t 307
15.3 Invoking musicxmI2Lyttt 307
15.4 Invoking abC2lyot 308
15.5 Generating LilyPond files 308

Appendix A Literature list............................. 309

Appendix B Scheme tutorial 310

Appendix C Notation manual tables.................... 312
C.1 Chord name chart 312
C.2 MIDIINStruments.t 314
C.3 List of COlOTs . ..o 314
C.4 The Feta font. 316

Appendix D Templatescoiiiiiiiiina.. 318
D.1 Single staff 318

D11 Notesonly. 318
D.1.2 Notes and LyTiCS.ot 318

D.1.3 Notes and chords. 319

D.1.4 Notes, lyrics, and chords. 320

D.2 Piano templates 320
D21 S0lo Planoot 320

D.2.2 Piano and melody with Iyrics 321

D.2.3 Piano centered lyrics 322

D.2.4 Piano centered dynamics.ooiii i 323

D.3 String quartet 325
D.3.1 String quartet. 325

D.3.2 String quartet parts 327

D.4 Vocal ensembles 329
D41 SATB VOCAL SCOTE . .\ v vttt e et e e e e e e e e et 329

D.4.2 SATB vocal score and automatic piano reduction 330

D.4.3 SATB with aligned contexts.o 333

D.5 Ancient notation templates 335
D.5.1 Transcription of mensural music............ 335

D.5.2 Gregorian transcription template 341

D.6 Jazz combo 342
D.7 Lilypond-book templates 348
D71 LAl e X L 348

D.7.2 Texinfo.o 348
Appendix E Cheatsheet................... 349
Appendix F GNU Free Documentation License 353
F.0.1 ADDENDUM: How to use this License for your documents 358
Appendix G LilyPond command index.................. 359

Appendix H LilyPondindex............................ 362

Preface 1

Preface

It must have been during a rehearsal of the EJE (Eindhoven Youth Orchestra), somewhere in
1995 that Jan, one of the cranked violists, told Han-Wen, one of the distorted French horn
players, about the grand new project he was working on. It was an automated system for
printing music (to be precise, it was MPP, a preprocessor for MusiXTeX). As it happened,
Han-Wen accidentally wanted to print out some parts from a score, so he started looking at the
software, and he quickly got hooked. It was decided that MPP was a dead end. After lots of
philosophizing and heated email exchanges, Han-Wen started LilyPond in 1996. This time, Jan
got sucked into Han-Wen’s new project.

In some ways, developing a computer program is like learning to play an instrument. In the
beginning, discovering how it works is fun, and the things you cannot do are challenging. After
the initial excitement, you have to practice and practice. Scales and studies can be dull, and
if you are not motivated by others — teachers, conductors or audience — it is very tempting to
give up. You continue, and gradually playing becomes a part of your life. Some days it comes
naturally, and it is wonderful, and on some days it just does not work, but you keep playing,
day after day.

Like making music, working on LilyPond can be dull work, and on some days it feels like
plodding through a morass of bugs. Nevertheless, it has become a part of our life, and we keep
doing it. Probably the most important motivation is that our program actually does something
useful for people. When we browse around the net we find many people who use LilyPond, and
produce impressive pieces of sheet music. Seeing that feels unreal, but in a very pleasant way.

Our users not only give us good vibes by using our program, many of them also help us by
giving suggestions and sending bug reports, so we would like to thank all users that sent us bug
reports, gave suggestions or contributed in any other way to LilyPond.

Playing and printing music is more than a nice analogy. Programming together is a lot of
fun, and helping people is deeply satisfying, but ultimately, working on LilyPond is a way to
express our deep love for music. May it help you create lots of beautiful music!

Han-Wen and Jan

Utrecht /Eindhoven, The Netherlands, July 2002.

Chapter 1: Introduction 2

1 Introduction

1.1 Engraving

The art of music typography is called (plate) engraving. The term derives from the traditional
process of music printing. Just a few decades ago, sheet music was made by cutting and stamping
the music into a zinc or pewter plate in mirror image. The plate would be inked, the depressions
caused by the cutting and stamping would hold ink. An image was formed by pressing paper
to the plate. The stamping and cutting was completely done by hand. Making a correction was
cumbersome, if possible at all, so the engraving had to be perfect in one go. Engraving was a
highly specialized skill; a craftsman had to complete around five years of training before earning
the title of master engraver, and another five years of experience were necessary to become truly
skilled.

Nowadays, all newly printed music is produced with computers. This has obvious advantages;
prints are cheaper to make, and editorial work can be delivered by email. Unfortunately, the
pervasive use of computers has also decreased the graphical quality of scores. Computer printouts
have a bland, mechanical look, which makes them unpleasant to play from.

The images below illustrate the difference between traditional engraving and typical computer
output, and the third picture shows how LilyPond mimics the traditional look. The left picture
shows a scan of a flat symbol from an edition published in 2000. The center depicts a symbol
from a hand-engraved Béarenreiter edition of the same music. The left scan illustrates typical
flaws of computer print: the staff lines are thin, the weight of the flat symbol matches the light
lines and it has a straight layout with sharp corners. By contrast, the Barenreiter flat has a
bold, almost voluptuous rounded look. Our flat symbol is designed after, among others, this
one. It is rounded, and its weight harmonizes with the thickness of our staff lines, which are
also much thicker than lines in the computer edition.

>

Henle (2000) Bérenreiter (1950) LilyPond Feta font
(2003)

In spacing, the distribution of space should reflect the durations between notes. However,
many modern scores adhere to the durations with mathematical precision, which leads to poor
results. In the next example a motive is printed twice: once using exact mathematical spacing,
and once with corrections. Can you spot which fragment is which?

0)

)’ 4 !
s s e e s e
gy ‘i o—] ! | oo oo

Chapter 1: Introduction 3

JoiS
T
{
1

Each bar in the fragment only uses notes that are played in a constant rhythm. The spacing
should reflect that. Unfortunately, the eye deceives us a little; not only does it notice the
distance between note heads, it also takes into account the distance between consecutive stems.
As a result, the notes of an up-stem/down-stem combination should be put farther apart, and
the notes of a down-stem/up-stem combination should be put closer together, all depending on
the combined vertical positions of the notes. The upper two measures are printed with this
correction, the lower two measures without, forming down-stem/up-stem clumps of notes.

Musicians are usually more absorbed with performing than with studying the looks of a piece
of music, so nitpicking about typographical details may seem academical. But it is not. In larger
pieces with monotonous rhythms, spacing corrections lead to subtle variations in the layout of
every line, giving each one a distinct visual signature. Without this signature all lines would
look the same, and they become like a labyrinth. If a musician looks away once or has a lapse
in concentration, the lines might lose their place on the page.

Similarly, the strong visual look of bold symbols on heavy staff lines stands out better when
the music is far away from the reader, for example, if it is on a music stand. A careful distribution
of white space allows music to be set very tightly without cluttering symbols together. The result
minimizes the number of page turns, which is a great advantage.

This is a common characteristic of typography. Layout should be pretty, not only for its own
sake, but especially because it helps the reader in her task. For performance material like sheet
music, this is of double importance: musicians have a limited amount of attention. The less
attention they need for reading, the more they can focus on playing the music. In other words,
better typography translates to better performances.

These examples demonstrate that music typography is an art that is subtle and complex,
and that producing it requires considerable expertise, which musicians usually do not have.
LilyPond is our effort to bring the graphical excellence of hand-engraved music to the computer
age, and make it available to normal musicians. We have tuned our algorithms, font-designs,
and program settings to produce prints that match the quality of the old editions we love to see
and love to play from.

1.2 Automated engraving

How do we go about implementing typography? If craftsmen need over ten years to become
true masters, how could we simple hackers ever write a program to take over their jobs?

The answer is: we cannot. Typography relies on human judgment of appearance, so people
cannot be replaced completely. However, much of the dull work can be automated. If LilyPond
solves most of the common situations correctly, this will be a huge improvement over existing
software. The remaining cases can be tuned by hand. Over the course of years, the software
can be refined to do more and more things automatically, so manual overrides are less and less
necessary.

When we started, we wrote the LilyPond program entirely in the C++ programming language;
the program’s functionality was set in stone by the developers. That proved to be unsatisfactory
for a number of reasons:

e When LilyPond makes mistakes, users need to override formatting decisions. Therefore, the
user must have access to the formatting engine. Hence, rules and settings cannot be fixed
by us at compile-time but must be accessible for users at run-time.

e Engraving is a matter of visual judgment, and therefore a matter of taste. As knowledgeable
as we are, users can disagree with our personal decisions. Therefore, the definitions of
typographical style must also be accessible to the user.

Chapter 1: Introduction 4

e Finally, we continually refine the formatting algorithms, so we need a flexible approach to
rules. The C++ language forces a certain method of grouping rules that do not match well
with how music notation works.

These problems have been addressed by integrating an interpreter for the Scheme program-
ming language and rewriting parts of LilyPond in Scheme. The current formatting architecture
is built around the notion of graphical objects, described by Scheme variables and functions.
This architecture encompasses formatting rules, typographical style and individual formatting
decisions. The user has direct access to most of these controls.

Scheme variables control layout decisions. For example, many graphical objects have a direc-
tion variable that encodes the choice between up and down (or left and right). Here you see two
chords, with accents and arpeggios. In the first chord, the graphical objects have all directions
down (or left). The second chord has all directions up (right).

4] il

===

=

The process of formatting a score consists of reading and writing the variables of graphical
objects. Some variables have a preset value. For example, the thickness of many lines — a
characteristic of typographical style — is a variable with a preset value. You are free to alter this
value, giving your score a different typographical impression.

be s » o b
‘QT'- [
=y I - bﬁ-
— 1 : — :

Formatting rules are also preset variables: each object has variables containing procedures.
These procedures perform the actual formatting, and by substituting different ones, we can
change the appearance of objects. In the following example, the rule which note head objects
are used to produce their symbol is changed during the music fragment.

o) A

)

N

o]
=

N
G 7o C

mmv

1.3 What symbols to engrave?

The formatting process decides where to place symbols. However, this can only be done once it
is decided what symbols should be printed, in other words what notation to use.

Common music notation is a system of recording music that has evolved over the past 1000
years. The form that is now in common use dates from the early renaissance. Although the
basic form (i.e., note heads on a 5-line staff) has not changed, the details still evolve to express

Chapter 1: Introduction 5

the innovations of contemporary notation. Hence, it encompasses some 500 years of music. Its
applications range from monophonic melodies to monstrous counterpoints for large orchestras.

How can we get a grip on such a many-headed beast, and force it into the confines of a com-
puter program? Our solution is to break up the problem of notation (as opposed to engraving,
i.e., typography) into digestible and programmable chunks: every type of symbol is handled by
a separate module, a so-called plug-in. Each plug-in is completely modular and independent, so
each can be developed and improved separately. Such plug-ins are called engravers, by analogy
with craftsmen who translate musical ideas to graphic symbols.

In the following example, we see how we start out with a plug-in for note heads, the Note_
heads_engraver.

Then a Staff_symbol_engraver adds the staff

oo o ® %

— =

the Clef_engraver defines a reference point for the staff

0 ;
A ®

G

and the Stem_engraver adds stems.

Q N N
X " 4
1 —eo o o &
|) V) V) Y)
I Yy v r v

The Stem_engraver is notified of any note head coming along. Every time one (or more, for a
chord) note head is seen, a stem object is created and connected to the note head. By adding
engravers for beams, slurs, accents, accidentals, bar lines, time signature, and key signature, we
get a complete piece of notation.

_O_ﬂﬂ.ﬁ!_ —— T
‘ et

—_— I —

-

This system works well for monophonic music, but what about polyphony? In polyphonic
notation, many voices can share a staff.

f

X

=
|

e e e e
=

—

Chapter 1: Introduction 6

In this situation, the accidentals and staff are shared, but the stems, slurs, beams, etc., are
private to each voice. Hence, engravers should be grouped. The engravers for note heads, stems,
slurs, etc., go into a group called ‘Voice context’, while the engravers for key, accidental, bar,
etc., go into a group called ‘Staff context’. In the case of polyphony, a single Staff context
contains more than one Voice context. Similarly, multiple Staff contexts can be put into a single
Score context. The Score context is the top level notation context.

See also

Program reference: Contexts.

>
X

[)
A
N (&1

£33
an

e

Vo IRY vﬁt_v

~e

v
Lle
N 1*:'7
e

S

)\

1.4 Music representation

Ideally, the input format for any high-level formatting system is an abstract description of the
content. In this case, that would be the music itself. This poses a formidable problem: how
can we define what music really is? Instead of trying to find an answer, we have reversed the
question. We write a program capable of producing sheet music, and adjust the format to be
as lean as possible. When the format can no longer be trimmed down, by definition we are left
with content itself. Our program serves as a formal definition of a music document.

The syntax is also the user-interface for LilyPond, hence it is easy to type
c'4 d's
a quarter note C1 (middle C) and an eighth note D1 (D above middle C)

0
)’ 4
7\ r)
[(oY W]

T

|~_/

On a microscopic scale, such syntax is easy to use. On a larger scale, syntax also needs
structure. How else can you enter complex pieces like symphonies and operas? The structure is
formed by the concept of music expressions: by combining small fragments of music into larger
ones, more complex music can be expressed. For example

c4

Chords can be constructed with << and >> enclosing the notes

Chapter 1: Introduction 7

<<c4 d4 e4d>>

This expression is put in sequence by enclosing it in curly braces { ... }
{ f4 <<c4d d4 e4>> }

0
St g

The above is also an expression, and so it may be combined again with another simultaneous
expression (a half note) using <<, \\, and >>

<< g2 \\ { f4 <<c4 d4 e4>> } >

0

g" e —

Such recursive structures can be specified neatly and formally in a context-free grammar.
The parsing code is also generated from this grammar. In other words, the syntax of LilyPond
is clearly and unambiguously defined.

User-interfaces and syntax are what people see and deal with most. They are partly a matter
of taste, and also subject of much discussion. Although discussions on taste do have their merit,
they are not very productive. In the larger picture of LilyPond, the importance of input syntax is
small: inventing neat syntax is easy, while writing decent formatting code is much harder. This
is also illustrated by the line-counts for the respective components: parsing and representation
take up less than 10% of the source code.

1.5 Example applications

We have written LilyPond as an experiment of how to condense the art of music engraving into
a computer program. Thanks to all that hard work, the program can now be used to perform
useful tasks. The simplest application is printing notes.

= SE=EE
% P R I
oJ e

By adding chord names and lyrics we obtain a lead sheet.

C C F C
Qn 1
s PEE=E=
[y, 4 @

twin kle twin kle little star

Chapter 1: Introduction 8

Polyphonic notation and piano music can also be printed. The following example combines
some more exotic constructs.

Screech and boink
Random complex notation

Han-Wen Nienhuys
e —
s o { P p
(l /?‘ Te oh hl‘ # i o
N "D |
G — —

%}

,
N
P

o
@
rv—

£a
<
XN

The fragments shown above have all been written by hand, but that is not a requirement.
Since the formatting engine is mostly automatic, it can serve as an output means for other
programs that manipulate music. For example, it can also be used to convert databases of
musical fragments to images for use on websites and multimedia presentations.

This manual also shows an application: the input format is text, and can therefore be easily
embedded in other text-based formats such as IXTEX, HTML, or in the case of this manual,
Texinfo. By means of a special program, the input fragments can be replaced by music images
in the resulting PDF or HTML output files. This makes it easy to mix music and text in
documents.

1.6 About this manual

The manual is divided into the following chapters:

e Chapter 2 [Tutoriall, page 11 gives a gentle introduction to typesetting music. First time
users should start here.

e Chapter 3 [Putting it all together], page 34 explains some general concepts about the lilypond
file format. If you are not certain where to place a command, read this chapter!

e Chapter 4 [Working on LilyPond projects], page 42 discusses practical uses of LilyPond and
how to avoid some common problems.

e Chapter 5 [Tweaking output/, page 51 shows how to change the default engraving that
LilyPond produces.

e Chapter 6 [Basic notation/, page 59 discusses topics grouped by notation construct. This
section gives details about basic notation that will be useful in almost any notation project.

e Chapter 7 [Instrument-specific notation/, page 109 discusses topics grouped by notation
construct. This section gives details about special notation that will only be useful for
particular instrument (or vocal) groups.

e Chapter 8 [Advanced notation], page 167 discusses topics grouped by notation construct.
This section gives details about complicated or unusual notation.

e Chapter 9 [Changing defaults], page 213 explains how to fine tune layout.

Chapter 1: Introduction 9

Chapter 10 [Non-musical notation/, page 23/ discusses non-musical output such as titles,
multiple movements, and how to select which MIDI instruments to use.

Chapter 11 [Spacing issues/, page 246 discusses issues which affect the global output, such
as selecting paper size or specifying page breaks.

Chapter 12 [Interfaces for programmers], page 271 explains how to create music functions.

Chapter 13 [Running LilyPond], page 286 shows how to run LilyPond and its helper pro-
grams. In addition, this section explains how to upgrade input files from previous versions
of LilyPond.

Chapter 14 [LilyPond-book/, page 295 explains the details behind creating documents with
in-line music examples, like this manual.

Chapter 15 [Converting from other formats], page 306 explains how to run the conversion
programs. These programs are supplied with the LilyPond package, and convert a variety
of music formats to the .1y format.

Appendiz A [Literature list], page 309 contains a set of useful reference books for those who
wish to know more on notation and engraving.

The Appendiz B [Scheme tutorial], page 310 presents a short introduction to Scheme, the
programming language that music functions use.

Appendiz C' [Notation manual tables], page 312 are a set of tables showing the chord names,
MIDI instruments, a list of color names, and the Feta font.

Appendiz D [Templates], page 318 of LilyPond pieces. Just cut and paste a template into
a file, add notes, and you're done!

The Appendiz E [Cheat sheet], page 349 is a handy reference of the most common LilyPond
commands.

The Appendiz G [LilyPond command index/, page 359 is an index of all LilyPond \commands.
The Appendiz H [LilyPond index/, page 362 is a complete index.

Once you are an experienced user, you can use the manual as reference: there is an extensive

index!, but the document is also available in a big HTML page, which can be searched easily
using the search facility of a web browser.

If you are not familiar with music notation or music terminology (especially if you are a

non-native English speaker), it is advisable to consult the glossary as well. The music glossary
explains musical terms, and includes translations to various languages. It is a separate document,
available in HTML and PDF.

This manual is not complete without a number of other documents. They are not available

in print, but should be included with the documentation package for your platform

Program reference

The program reference is a set of heavily cross linked HTML pages, which document the
nitty-gritty details of each and every LilyPond class, object, and function. It is produced
directly from the formatting definitions used.

Almost all formatting functionality that is used internally, is available directly to the user.
For example, all variables that control thickness values, distances, etc., can be changed in
input files. There are a huge number of formatting options, and all of them are described in
this document. Each section of the notation manual has a See also subsection, which refers
to the generated documentation. In the HTML document, these subsections have clickable
links.

Lgf you are looking for something, and you cannot find it in the manual, that is considered a bug. In that case,

please file a bug report.

Chapter 1: Introduction 10

e Various input examples.

This collection of files shows various tips and tricks, and is available as a big HTML docu-
ment, with pictures and explanatory texts included.

e The regression tests.

This collection of files tests each notation and engraving feature of LilyPond in one file.
The collection is primarily there to help us debug problems, but it can be instructive to see
how we exercise the program. The format is similar to the tips and tricks document.

In all HTML documents that have music fragments embedded, the LilyPond input that was
used to produce that image can be viewed by clicking the image.

The location of the documentation files that are mentioned here can vary from system to
system. On occasion, this manual refers to initialization and example files. Throughout this
manual, we refer to input files relative to the top-directory of the source archive. For example,
‘input/test/bla.ly’ may refer to the file ‘1ilypond2.x.y/input/test/bla.ly’. On binary
packages for the Unix platform, the documentation and examples can typically be found some-
where below ‘/usr/share/doc/1lilypond/’. Initialization files, for example ‘scm/1ily.scm’, or
‘ly/engraver-init.ly’, are usually found in the directory ‘/usr/share/lilypond/’.

Finally, this and all other manuals, are available online both as PDF files and HTML from
the web site, which can be found at http://www.lilypond.org/.

http://www.lilypond.org/

Chapter 2: Tutorial 11

2 Tutorial

This tutorial starts with an introduction to the LilyPond music language and how to produce
printed music. After this first contact we will explain how to create common musical notation.

2.1 First steps

This section gives a basic introduction to working with LilyPond.

2.1.1 Compiling a file

The first example demonstrates how to start working with LilyPond. To create sheet music, we
write a text file that specifies the notation. For example, if we write

{
C 1 e 1 g 1 e 1
}
the result looks like this

4] .
DA

Warning: Every piece of LilyPond input needs to have { curly braces } placed around the
input. The braces should also be surrounded by a space unless they are at the beginning or
end of a line to avoid ambiguities. These may be omitted in some examples in this manual, but
don’t forget them in your own music!

In addition, LilyPond input is case sensitive. {cdel} is valid input; {CDE} will
produce an error message.

Entering music and viewing output

In this section we will explain what commands to run and how to view or print the output.

MacOS X

If you double click LilyPond.app, it will open with an example file. Save it, for example, to
‘test.ly’ on your Desktop, and then process it with the menu command ‘Compile > Typeset
File’. The resulting PDF file will be displayed on your screen.

Be warned that the first time you ever run LilyPond, it will take a minute or two because all
of the system fonts have to be analyzed first.

For future use of LilyPond, you should begin by selecting "New" or "Open". You must save
your file before typesetting it. If any errors occur in processing, please see the log window.

Windows
On Windows, start up a text-editor! and enter

{
CI el gl el

¥

1 Any simple or programmer-oriented editor with UTF-8 support will do, for example Notepad. Do not use a
word processor, since these insert formatting codes that will confuse LilyPond.

Chapter 2: Tutorial 12

Save it on the desktop as ‘test.ly’ and make sure that it is not called ‘test.1ly.TXT’. Double
clicking ‘test.ly’ will process the file and show the resulting PDF file. To edit an existing .1y’
file, right-click on it and select “Edit source”.

If you double-click in the LilyPond icon on the Desktop, it will open a simple text editor
with an example file. Save it, for example, to ‘test.ly’ on your Desktop, and then double-click
on the file to process it. After some seconds, you will get a file ‘test.pdf’ on your desktop.
Double-click on this PDF file to view the typeset score. An alternative method to process the
‘test.ly’ file is to drag and drop it onto the LilyPond icon using your mouse pointer.

Double-clicking the file does not only result in a PDF file, but also produces a ‘.1log’ file that
contains some information on what LilyPond has done to the file. If any errors occur, please
examine this file.

Unix
Begin by opening a terminal window and starting a text editor. For example, you could open

an xterm and execute joe®. In your text editor, enter the following input and save the file as
‘test.ly’

{
c' e g'e'
}
To process ‘test.ly’, proceed as follows
lilypond test.ly
You will see something resembling

lilypond test.ly

GNU LilyPond 2.10.0

Processing ‘test.ly'

Parsing. ..

Interpreting music... [1]
Preprocessing graphical objects...
Calculating line breaks... [2]
Layout output to ‘test.ps'...
Converting to ‘test.pdf'...

The result is the file ‘test.pdf’ which you can print or view with the standard facilities of your
operating system.?
2.1.2 Simple notation

LilyPond will add some notation elements automatically. In the next example, we have only
specified four pitches, but LilyPond has added a clef, time signature, and rhythms.

{
c' e' g'e'
}
0 .
X—¢ ——1—
[y o . .

2 There are macro files for VIM addicts, and there is a LilyPond-mode for Emacs addicts. If they have not
been installed already, refer to the file ‘INSTALL. txt’. The easiest editing environment is ‘LilyPondTool’. See
Section 13.6 [Editor support], page 293 for more information.

31 your system does not have any such tools installed, you can try Ghostscript, a freely available package for
viewing and printing PDF and PostScript files.

http://www.cs.wisc.edu/~ghost/

Chapter 2: Tutorial 13

This behavior may be altered, but in most cases these automatic values are useful.

Pitches

The easiest way to enter notes is by using \relative mode. In this mode, the interval between
the previous note and the current note is assumed to be within a fourth. We begin by entering
the most elementary piece of music, a scale.

\relative c' {
cdef
gabc

}

0 i

r £ |
oy ‘_i_lp_F
:, & [4 | |

The initial note is middle C. Each successive note is within a fourth of the previous note —
in other words, the first ‘c’ is the closest C to middle C. This is followed by the closest D to the
previous note. We can create melodies which have larger intervals:

\relative c' {
dfag
cbfd

DO

HC et r

¢

As you may notice, this example does not start on middle C. The first note — the ‘d’ — is the
closest D to middle C.

To add intervals that are larger than a fourth, we can raise the octave by adding a single
quote ' (or apostrophe) to the note name. We can lower the octave by adding a comma , to
the note name.

\relative c'' {
aa, c' f,

gg" a,, f!
}

T

f

y, 5

To change a note by two (or more!) octaves, we use multiple ' ' or ,, — but be careful that you
use two single quotes '' and not one double quote " ! The initial value in \relative c' may
also be modified like this.

Chapter 2: Tutorial 14

Durations (rhythms)

The duration of a note is specified by a number after the note name. ‘1’ for a whole note, ‘2’
for a half note, ‘4’ for a quarter note and so on. Beams are added automatically.

\relative c'' {
al
a2 a4 a8 a
al6 a aaa32aaaabd4daaaaaaaa?

¢J

If you do not specify a duration, the previous duration is used for the next note. The duration
of the first note defaults to a quarter.

To create dotted notes, add a dot ‘.’ to the duration number.

\relative c'' {
a a a4. a8
a8. al6 a a8. a8 a4.

}
() \ —
)" 4 1\ \
: —a - s s
[Y)
Rests

A rest is entered just like a note with the name ‘r’:

\relative c'' {
arr2
r8 ard r4. r8

}
0 -
A i S A S
[y

Time signature
The time signature) can be set with the \time command:

\relative c'' {
\time 3/4
a4 a a
\time 6/8
ad. a

Chapter 2: Tutorial

\time 4/4
ad a a a
}
() | | |
)" 4 | G s | |
[Y)
Clef

The clef can be set using the \clef command:

\relative c' {
\clef treble
cl
\clef alto
cl
\clef tenor
cl
\clef bass
cl

J e

All together

Here is a small example showing all these elements together:

\relative c, {
\time 3/4
\clef bass
c2 e8 c' g'2.
f4 ed c4d c, rd

A2

L
§

g

¢

=

More information

Entering pitches and durations
see Section 6.1 [Pitches], page 59 and Section 6.2.1 [Durations|, page 66.

Rests see Section 6.1.9 [Rests|, page 64.

Time signatures and other timing commands
see Section 6.4.3 [Time signature], page 78.

Clefs see Section 6.4.1 [Clef], page 76.

Chapter 2: Tutorial 16

2.1.3 Working on text files

LilyPond input files are treated like files in most programming languages: they are case sensitive,
white-space insensitive, expressions are formed with curly braces { }, and comments are denoted

with % or %{ .. %}.

If the previous sentence sounds like nonsense, don’t worry! We’ll explain what all these terms
mean:

e Case sensitive: it matters whether you enter a letter in lower case (i.e. a, b, s, t) or
upper case (i.e. A, B, S, T). Notes are lower case: {cde} isvalid input; { CDE }
will produce an error message.

e Whitespace insensitive: it does not matter how many spaces (or new lines) you add. { ¢
d e } means the same thing as { ¢ de} and

{

e }

Of course, the previous example is hard to read. A good rule of thumb is to indent code
blocks with either a tab or two spaces:

{

cde

¥

e Expressions: Every piece of LilyPond input needs to have { curly braces } placed around
the input. These braces tell LilyPond that the input is a single music expression, just like
parenthesis ‘()’ in mathematics. The braces should be surrounded by a space unless they
are at the beginning or end of a line to avoid ambiguities.

A function (such as \relative { }) also counts as a single music expression.

e Comments: A comment is a remark for the human reader of the music input; it is ignored
while parsing, so it has no effect on the printed output. There are two types of comments.
The percent symbol ‘%’ introduces a line comment; anything after ‘%’ on that line is ignored.
A block comment marks a whole section of music input as a comment. Anything that is
enclosed in %{ and %} is ignored. The following fragment shows possible uses for comments

% notes for twinkle twinkle follow
cd cg' gaag2

hi
This line, and the notes below
are ignored, since they are in a
block comment.

ggffeeddc2
ht

There are more tips for constructing input files in Section 4.1 [Suggestions for writing Lily-
Pond files], page 42.

2.1.4 How to read the tutorial

As we saw in Section 2.1.3 [Working on text files|, page 16, LilyPond input must be surrounded
by { } marks or a \relative c¢'' { ... }. For the rest of this manual, most examples will omit
this.

If you are reading the HTML documentation and wish to see the exact exact LilyPond code
that was used to create the example, simply click on the picture. If you are not reading the

Chapter 2: Tutorial 17

HTML version, you could copy and paste the displayed input, but you must add the \relative
c'' { } like this:
\relative c'' {
example goes here...

}

Why omit the braces? Most examples in this manual can be inserted into the middle of a
longer piece of music. For these examples, it does not make sense to add \relative c'' { } —
you should not place a \relative inside another \relative, so you would not be able to copy
a small documentation example and paste it inside a longer piece of your own.

2.2 Single staff notation

This section introduces common notation that is used for one voice on one staff.

2.2.1 Relative note names

As we saw in Section 2.1.2 [Simple notation], page 12, LilyPond calculates the pitch of each note
relative to the previous one*. If no extra octave marks (' and ,) are added, it assumes that
each pitch is within a fourth of the previous note.

LilyPond examines pitches based on the note names — in other words, an augmented fourth
is not the same as a diminished fifth. If we begin at a C, then an F-sharp will be placed a higher
than the C, while a G-flat will be placed lower than the C.

c2 fis

c2 ges
0 3 .
"4 P d I
4\ r) ! 7 [
[oY W | | b A
ANV I I L= d
¢ ! !

More information

Relative octaves
see Section 6.1.6 [Relative octaves|, page 62.

Octave check
see Section 6.1.7 [Octave check]|, page 63.

2.2.2 Accidentals and key signatures

Accidentals

A sharp pitch is made by adding ‘is’ to the name, and a flat pitch by adding ‘es’. As you
might expect, a double sharp or double flat is made by adding ‘isis’ or ‘eses’

cisl ees fisis, aeses

) |
)" 4 LL s
£\ e 1L O 11
N UT

SV RO

e

ey

s

4 There is another mode of entering pitches, Section 2.5.3 [Absolute note names], page 30, but in practice
relative mode is much easier and safer to use.

5 This syntax derived from note naming conventions in Nordic and Germanic languages, like German and Dutch.
To use other names for accidentals, see Section 6.1.5 [Note names in other languages|, page 61.

Chapter 2: Tutorial 18

Key signatures
The key signature is set with the command \key followed by a pitch and \major or \minor.

\key d \major

al

\key c \minor

a
0 4 b1
) AR DY WL 1D
I\ "L fe b 1 L
1T U O 1V D O
ANV |
JJ

Warning: key signatures and pitches

To determine whether to print an accidental, LilyPond examines the pitches and the key signa-
ture. The key signature only effects the printed accidentals, not the actual pitches! This is a
feature that often causes confusion to newcomers, so let us explain it in more detail.

LilyPond makes a sharp distinction between musical content and layout. The alteration
(flat, natural or sharp) of a note is part of the pitch, and is therefore musical content. Whether
an accidental (a printed flat, natural or sharp sign) is printed in front of the corresponding
note is a question of layout. Layout is something that follows rules, so accidentals are printed
automatically according to those rules. The pitches in your music are works of art, so they will
not be added automatically, and you must enter what you want to hear.

In this example

\key d \major
d cis fis

0 4
Lhte e
g

No note has a printed accidental, but you must still add the ‘is’ to cis and fis.

The code ‘e’ does not mean “print a black dot just below the first line of the staff.” Rather,
it means: “there is a note with pitch E-natural.” In the key of A-flat major, it does get an
accidental:

\key aes \major
e

Lt

oJ

Adding all alterations explicitly might require a little more effort when typing, but the ad-
vantage is that transposing is easier, and accidentals can be printed according to different con-
ventions. See Section 9.1.1 [Automatic accidentals], page 213 for some examples how accidentals
can be printed according to different rules.

Chapter 2: Tutorial 19

More information

Accidentals

see Section 6.1.2 [Accidentals], page 60 and Section 9.1.1 [Automatic
accidentals], page 213.

Key signature
see Section 6.4.2 [Key signature|, page 77.

2.2.3 Ties and slurs

Ties

A tie is created by appending a tilde ‘~’ to the first note being tied

gd™ g c27
c4d © c8 a8 ~ a2
()
)" 4 | | P
e —~
— | | | “
ry) |
Slurs

A slur is a curve drawn across many notes. The starting note and ending note are marked with
‘(’ and)’ respectively.

d4(c16) cis(d e c cis d) e(d4)

;thzﬁthﬁr*ﬂ ZE=
N ! !

Phrasing slurs

Slurs to indicate longer phrasing can be entered with \ (and \). You can have both legato slurs
and phrasing slurs at the same time, but you cannot have simultaneous slurs or simultaneous
phrasing slurs.

a8(\(ais b c¢) cis2 b'2 a4 cis,\)

o — 2 &
@ c |# "iﬁr -

o !

A

Warnings: slurs vs. ties

A slur looks like a tie, but it has a different meaning. A tie simply makes the first note longer,
and can only be used on pairs of notes with the same pitch. Slurs indicate the articulations of
notes, and can be used on larger groups of notes. Slurs and ties can be nested.

c2”(c8 fis fis4 ~ fis2 g2)

“ ' ol

L —id -
Z | |
| [— !

Chapter 2: Tutorial 20

More information
Ties see Section 6.5.1 [Ties|, page 86.
Slurs see Section 6.5.2 [Slurs], page 88.

Phrasing slurs
see Section 6.5.3 [Phrasing slurs|, page 89.

2.2.4 Articulation and dynamics

Articulations
Common articulations can be added to a note using a dash ‘=’ and a single character:

C—. ¢c—— c=> c~" ¢+ c-_

o) IS

ANV - | | | | | |

U I I I I I I
Fingerings

Similarly, fingering indications can be added to a note using a dash (‘-’) and the digit to be
printed:

c-3 e-5 b-2 a-1

1
[3 2 2
A1V . I I
U | |

Articulations and fingerings are usually placed automatically, but you can specify a direction
using ‘*’ (up) or ‘_’ (down). You can also use multiple articulations on the same note. However,
in most cases it is best to let LilyPond determine the articulation directions.

c_.-"1d°. £74_2-> e"—_+

4
N 1 . = _
o
Vi
ANV |
oJ L 2 +
Dynamics

Dynamic signs are made by adding the markings (with a backslash) to the note

c\ff c\mf c\p c\pp

Chapter 2: Tutorial 21

Crescendi and decrescendi are started with the commands \< and \>. An ending dynamic,
for example \f, will finish the (de)crescendo, or the command \! can be used

c2\< c2\ff\> c2 c2\!

)" 4

4\ K} 7 7 7 7

[Fan YA W | | | |

ANV, | | | |

U | | | |
<ff>

More information

Articulations
see Section 6.6.1 [Articulations|, page 94.

Fingering see Section 6.6.2 [Fingering instructions|, page 96.

Dynamics see Section 6.6.3 [Dynamics]|, page 98.

2.2.5 Automatic and manual beams

All beams are drawn automatically:
a8 ais d ees r d c16 b a8

0 [
— S —
W =

If you do not like the automatic beams, they may be overridden manually. Mark the first note
to be beamed with ‘[’ and the last one with ‘1.

a8[ais] d[ees r d] a b

0) | |
EAATED

| | I |
¢

More information

Automatic beams
see Section 6.5.5 [Automatic beams], page 90.

Manual beams
see Section 6.5.6 [Manual beams], page 90.

2.2.6 Advanced rhythmic commands

Partial measure
A pickup (or anacrusis) is entered with the keyword \partial. It is followed by a duration:
\partial 4 is a quarter note pickup and \partial 8 an eighth note.

\partial 8
£f8 c2 d

K Y

-

-
N (o]

N

TTTO

G e

Chapter 2: Tutorial 22

Tuplets

Tuplets are made with the \times keyword. It takes two arguments: a fraction and a piece of
music. The duration of the piece of music is multiplied by the fraction. Triplets make notes
occupy 2/3 of their notated duration, so a triplet has 2/3 as its fraction

\times 2/3 { f8 g a }
\times 2/3 { c r ¢ }
\times 2/3 { £,8 gl6[a g al }
\times 2/3 { d4 a8 }

o o 2
]] PP ®
0 oo P 5 T e e)
| ¥)
o t1i—— 1
[y L g—1 L g 1 L_g_1

Grace notes

Grace notes are created with the \grace command, although they can also be created by pre-
fixing a music expression with the keyword \appoggiatura or \acciaccatura

c2 \grace { a32[b] } c2
c2 \appoggiatura bl6 c2
c2 \acciaccatura bl6 c2

n ﬂ A A
)4 |~ N X
4\ o (7 | gl 7 [[7]
[[« YA W2 [b | hed | hd

g |

More information

Grace notes
see Section 6.5.7 [Grace notes|, page 91,

Tuplets see Section 6.2.3 [Tuplets], page 67,

Pickups see Section 6.4.4 [Partial measures|, page 79.

2.3 Multiple notes at once

This section introduces having more than one note at the same time: multiple instruments,
multiple staves for a single instrument (i.e. piano), and chords.

Polyphony in music refers to having more than one voice occurring in a piece of music.
Polyphony in LilyPond refers to having more than one voice on the same staff.

2.3.1 Music expressions explained

In LilyPond input files, music is represented by music expressions. A single note is a music
expression, although it is not valid input all on its own.

a4

Chapter 2: Tutorial 23

Enclosing a group of notes in braces creates a new music expression:

{ a4 g4}

o) .
ot e g

oJ

Putting a group of music expressions (e.g. notes) in braces means that they are in sequence
(i.e. each one follows the previous one). The result is another music expression:

{{a4g}rfg?l

f

oJ

Simultaneous music expressions: multiple staves

This technique is useful for polyphonic music. To enter music with more voices or more staves, we
combine expressions in parallel. To indicate that two voices should play at the same time, simply
enter a simultaneous combination of music expressions. A ‘simultaneous’ music expression is
formed by enclosing expressions inside << and >>. In the following example, three sequences (all
containing two separate notes) are combined simultaneously:

\relative c'' {

<<
{ad g}l
{fel
{db}
>>
}
0 L
:w:
()
()
X—r f
()
)" 4
(€
(e
oJ >

Note that we have indented each level of the input with a different amount of space. LilyPond
does not care how much (or little) space there is at the beginning of a line, but indenting LilyPond
code like this makes it much easier for humans to read.

Warning: each note is relative to the previous note in the input, not relative to the c¢'' in
the initial \relative command.

Chapter 2: Tutorial 24

Simultaneous music expressions: single staff

To determine the number of staves in a piece, LilyPond looks at the first expression. If it is a
single note, there is one staff; if there is a simultaneous expression, there is more than one staff.
\relative c'' {
c2 <<Lc e>>
<< {efl}{c<bd>}} >
}

N (o

Gz e
-

l() 7 7
|
|

Analogy: mathematical expressions

This mechanism is similar to mathematical formulas: a big formula is created by composing
small formulas. Such formulas are called expressions, and their definition is recursive so you can
make arbitrarily complex and large expressions. For example,

1
1+ 2
(1 +2) 3

(1 +2) *3) / (4 %5)

This is a sequence of expressions, where each expression is contained in the next (larger)
one. The simplest expressions are numbers, and larger ones are made by combining expressions
with operators (like ‘+’, ‘¥’ and ‘/’) and parentheses. Like mathematical expressions, music
expressions can be nested arbitrarily deep, which is necessary for complex music like polyphonic
scores.

2.3.2 Multiple staves

As we saw in Section 2.3.1 [Music expressions explained|, page 22, LilyPond input files are
constructed out of music expressions. If the score begins with simultaneous music expressions,
LilyPond creates multiples staves. However, it is easier to see what happens if we create each
staff explicitly.

To print more than one staff, each piece of music that makes up a staff is marked by adding
\new Staff before it. These Staff elements are then combined in parallel with << and >>:

\relative c'' {
<<
\new Staff { \clef treble c }

\new Staff { \clef bass c,, }
>>

Do

Chapter 2: Tutorial 25

The command \new introduces a ‘notation context.” A notation context is an environment
in which musical events (like notes or \clef commands) are interpreted. For simple pieces,
such notation contexts are created automatically. For more complex pieces, it is best to mark
contexts explicitly.

There are several types of contexts. Score, Staff, and Voice handle melodic notation, while
Lyrics sets lyric texts and ChordNames prints chord names.

In terms of syntax, prepending \new to a music expression creates a bigger music expression.
In this way it resembles the minus sign in mathematics. The formula (4 + 5) is an expression,
so —(4+ 5) is a bigger expression.
Time signatures entered in one staff affects all other staves, but the key signature of one staff
does not affect other staves®.
\relative c'' {
<<
\new Staff { \clef treble \time 3/4 c¢ }
\new Staff { \clef bass \key d \major c,, }

>>
}
f
{es i
D 1
ry) |
[O 2

2.3.3 Piano staves

Piano music is typeset in two staves connected by a brace. Printing such a staff is similar to the
polyphonic example in Section 2.3.2 [Multiple staves|, page 24, but now this entire expression is
inserted inside a PianoStaff:

\new PianoStaff <<
\new Staff
\new Staff

>>

Here is a small example
\relative c'' {
\new PianoStaff <<
\new Staff { \time 2/4 c4 eg g, }
\new Staff { \clef bass c,, c' e ¢ }

>>
}

IS ERaisy
ANV Li' | ‘_
U |

o |Be
9 ol
| |

6 This behavior may be changed if desired; see Chapter 9 [Changing defaults], page 213 for details.

Chapter 2: Tutorial 26

More information

See Section 7.1 [Piano music|, page 109.

2.3.4 Single staff polyphony
When different melodic lines are combined on a single staff they are printed as polyphonic voices;
each voice has its own stems, slurs and beams, and the top voice has the stems up, while the
bottom voice has them down.
Entering such parts is done by entering each voice as a sequence (with {...}) and combining
these simultaneously, separating the voices with \\
<<
{ a4 g2 f4~ 4 } \\
{rd g4 £2 f4 }
>>

—~

Y, T -

For polyphonic music typesetting, spacer rests can also be convenient; these are rests that do
not print. They are useful for filling up voices that temporarily do not play. Here is the same
example with a spacer rest (‘s’) instead of a normal rest (‘r’),

<<
{ a4 g2 4~ £4 3 \\
{ s4 g4 £2 f4 %

:

>>
o) L
" 4 —
[y [

Again, these expressions can be nested arbitrarily.

<<
\new Staff <<
{ a4 g2 4~ f4 } \\
{ s4 g4 £2 4 }
>>
\new Staff <<
\clef bass
{ <c g1 7 <c g>4 } \\
{e,,4de2 "~ e4}
>>
>>

N
)

Chapter 2: Tutorial 27

More information

See Section 6.3.3 [Basic polyphony], page 70.

2.3.5 Combining notes into chords

Chords can be made by surrounding pitches with single angle brackets. Angle brackets are the
symbols ‘<’ and >’
r4d <c e g>4 <c f a>2

n .
Lot

o !

You can combine markings like beams and ties with chords. They must be placed outside
the angle brackets

r4 <c e g>8[<c f a>]” <c f a>2

0 -
Zi

S)— I —

e) ==

rd <c e g>8\>(<c e g> <c e g>4 <c £ a>\!)

= IIEE
w A

S S
—

2.4 Songs

This section introduces vocal music and simple song sheets.

2.4.1 Printing lyrics
Consider a simple melody:

\relative c'' {
ad e c8 e r4d
b2 c4(d)

}

f

) i
|

o

Land

L 18

|
o "I' z o @

The lyrics can be set to these notes, combining both with the \addlyrics keyword. Lyrics
are entered by separating each syllable with a space.
<<
\relative c'' {
a4 e c8 e rd
b2 c4(d)

Chapter 2: Tutorial 28

}
\addlyrics { One day this shall be free }
>>
o) |
)" 4 | N
) r d
o te— s
() & z o @

[

Onedaythisshall be free

This melody ends on a melisma, a single syllable (‘free’) sung to more than one note. This
is indicated with an extender line. It is entered as two underscores __:
<<

\relative c'' {
ad e c8 e rd

b2 c4(d)
}
\addlyrics { One day this shall be free __ }
>>
0
)’ 4 N
) r d
— ¢
[y < z o @

—
Oneday thisshall be free_

Similarly, hyphens between words can be entered as two dashes, resulting in a centered
hyphen between two syllables

<<
\relative c' {
\time 2/4
f4 £ c ¢
}
\addlyrics { A -- le —- gri —— a }
>>
()
)" 4)
7\ A i
|
& -
A - le - - gri - a

More information

More options, such as putting multiple stanzas below a melody, are discussed in
Section 7.3 [Vocal music], page 118.

2.4.2 A lead sheet

In popular music it is common to denote accompaniment with chord names. Such chords can
be entered like notes,

Chapter 2: Tutorial 29

\chordmode { c2 f4. g8 }

Now each pitch is read as the root of a chord instead of a note. This mode is switched on
with \chordmode. Other chords can be created by adding modifiers after a colon. The following
example shows a few common modifiers:

\chordmode { c2 f4:m g4:maj7 gisl:dim7 }

For lead sheets, chords are not printed on staves, but as names on a line for themselves. This
is achieved by using \chords instead of \chordmode. This uses the same syntax as \chordmode,
but renders the notes in a ChordNames context, with the following result:

ey

e o

\chords { c2 f4.:m g4.:maj7 gis8:dim7 }

C Fm 6= Gf”

When put together, chord names, lyrics and a melody form a lead sheet,

<<
\chords { c2 g:sus4 f e }
\relative c'' {
ad e c8 e rd

b2 c4(d)
}
\addlyrics { One day this shall be free __ }
>>
sus4
C G F E
0
"4 N
) £
—
[@
[y, < z @

Oneday thisshall be free_

More information

A complete list of modifiers and other options for layout can be found in Section 6.3.1
[Chords|, page 70.

Chapter 2: Tutorial 30

2.5 Final touches

This is the final section of the tutorial; it demonstrates how to add the final touches to simple
pieces, and provides an introduction to the rest of the manual.

2.5.1 Version number

The \version statement marks for which version of LilyPond the file was written. To mark a
file for version 2.10.1, place

\version "2.10.10"
at the top of your LilyPond file.

These annotations make future upgrades of LilyPond go more smoothly. Changes in the
syntax are handled with a special program, ‘convert-1y’ (see Section 13.3 [Updating files with
convert-ly], page 290), and it uses \version to determine what rules to apply.

2.5.2 Adding titles

The title, composer, opus number, and similar information are entered in the \header block.
This exists outside of the main music expression; the \header block is usually placed underneath
the Section 2.5.1 [Version number|, page 30.

\version "2.10.10"

\header {
title = "Symphony"
composer = "Me"
opus = "Op. 9"

3

{

. music ...
3

When the file is processed, the title and composer are printed above the music. More infor-
mation on titling can be found in Section 10.2.1 [Creating titles|, page 238.

2.5.3 Absolute note names

So far we have always used \relative to define pitches. This is the easiest way to enter most
music, but another way of defining pitches exists: absolute mode.

If you omit the \relative, LilyPond treats all pitches as absolute values. A c¢' will always
mean middle C, a b will always mean the note one step below middle C, and a g, will always
mean the note on the bottom staff of the bass clef.

{
\clef bass

c'bg, g,
g, £, £ c'

Xz
d

[
Ny
.
-~
o/

Here is a four-octave scale:

Chapter 2: Tutorial 31

\clef bass

c, d, e, f,

g, a, b, c
defg
abc'd'

\clef treble

e' f' g' a'

b' ¢'' d'' e"'
f''g'ta't b''
Cllll

N

o
.
cgg»:»

Y

-

><:T
)

e
|6

As you can see, writing a melody in the treble clef involves a lot of quote * marks. Consider
this fragment from Mozart:

{
\key a \major
\time 6/8
cis''8. d''16 cis''8 e''4 e''8
b'8. cis''16 b'8 d''4 4d''8
}
s 5 ~ >
ANV [®) | |
e . E—

All these quotes makes the input less readable and it is a source of errors. With \relative,
the previous example is much easier to read:

\relative c'' {
\key a \major
\time 6/8
cis8. d16 cis8 e4d e8
b8. cisl1l6 b8 d4 d8

S

N

]

N

Chapter 2: Tutorial 32

If you make a mistake with an octave mark (' or ,) while working in \relative mode, it
is very obvious — many notes will be in the wrong octave. When working in absolute mode, a
single mistake will not be as visible, and will not be as easy to find.

However, absolute mode is useful for music which has large intervals, and is extremely useful
for computer-generated LilyPond files.

2.5.4 Organizing pieces with identifiers

When all of the elements discussed earlier are combined to produce larger files, the music ex-
pressions get a lot bigger. In polyphonic music with many staves, the input files can become
very confusing. We can reduce this confusion by using identifiers.

With identifiers (also known as variables or macros), we can break up complex music expres-
sions. An identifier is assigned as follows

namedMusic = { ... }

The contents of the music expression namedMusic can be used later by placing a backslash
in front of the name (\namedMusic, just like a normal LilyPond command). Identifiers must be
defined before the main music expression.

violin = \new Staff { \relative c¢'' {

ad bchb
i3
cello = \new Staff { \relative c {
\clef bass
e2 d
i3
{
<<
\violin
\cello
>>
+
()
L e
eJ
6)
e op
| |

The name of an identifier must have alphabetic characters only: no numbers, underscores, or
dashes.

It is possible to use variables for many other types of objects in the input. For example,
width = 4.5\cm
name = "Wendy"
aFivePaper = \paper { paperheight = 21.0 \cm }
Depending on its contents, the identifier can be used in different places. The following
example uses the above variables:
\paper {
\aFivePaper
line-width = \width
}
{ c4"\name }

Chapter 2: Tutorial 33

2.5.5 After the tutorial

After finishing the tutorial, you should probably try writing a piece or two. Start with one of
the Appendix D [Templates], page 318 and add notes. If you need any notation that was not
covered in the tutorial, look at the Notation Reference, starting with Chapter 6 [Basic notation],
page 59. If you want to write for an instrument ensemble which is not covered in the templates,
take a look at Section 3.1 [Extending the templates], page 34.

Once you have written a few short pieces, read the rest of the Learning Manual (chapters 3-
5). There’s nothing wrong with reading them now, of course! However, the rest of the Learning
Manual assumes that you are familiar with LilyPond input. You may wish to skim these chapters
right now, and come back to them after you have more experience.

2.5.6 How to read the manual

As we saw in Section 2.1.4 [How to read the tutorial], page 16, many examples in the tutorial
omitted a \relative c'' { ... } around the printed example.

In the rest of the manual, we are much more lax about the printed examples: sometimes
they may have omitted a \relative c'' { ... }, but in other times a different initial pitch
may be used (such as c' or ¢, ,), and in some cases the whole example is in absolute note mode!
However, ambiguities like this only exist where the pitches are not important. In any example
where the pitch matters, we have explicitly stated our \relative our our absolute-mode { }.

If you are still confused about the exact LilyPond input that was used in an example, read
the HTML version (if you are not already doing so) and click on the picture of the music. This
will display the exact input that LilyPond used to generate this manual.

Chapter 3: Putting it all together 34

3 Putting it all together

This chapter discusses general LilyPond concepts and how to create \score blocks.

3.1 Extending the templates

You've read the tutorial, you know how to write music. But how can you get the staves that
you want? The templates are ok, but what if you want something that isn’t covered?

Start off with the template that seems closest to what you want to end up with. Let’s say
that you want to write something for soprano and cello. In this case, we would start with “Notes
and lyrics” (for the soprano part).

\version "2.10.10"
melody = \relative c' {
\clef treble
\key ¢ \major
\time 4/4

ad b cd

text = \lyricmode {
Aaa Bee Cee Dee

¥

\score{
<<
\new Voice = "one" {
\autoBeam0ff
\melody
}
\new Lyrics \lyricsto "one" \text
>>
\layout { }
\midi { }
}

Now we want to add a cello part. Let’s look at the “Notes only” example:

\version "2.10.10"
melody = \relative c' {
\clef treble
\key c \major
\time 4/4

ad b cd
}

\score {

\new Staff \melody
\layout { }

\midi { }

}

Chapter 3: Putting it all together 35

We don’t need two \version commands. We’ll need the melody section. We don’t want two
\score sections — if we had two \scores, we’d get the two parts separately. We want them
together, as a duet. Within the \score section, we don’t need two \layout or \midi.

If we simply cut and paste the melody section, we would end up with two melody sections. So
let’s rename them. We'll call the section for the soprano sopranoMusic and the section for the
cello celloMusic. While we're doing this, let’s rename text to be sopranoLyrics. Remember
to rename both instances of all these names — both the initial definition (the melody = relative
c' { part) and the name’s use (in the \score section).

While we’re doing this, let’s change the cello part’s staff — celli normally use bass clef. We’ll
also give the cello some different notes.

\version "2.10.10"
sopranoMusic = \relative c' {
\clef treble
\key c \major
\time 4/4

ad bcd

sopranoLyrics = \lyricmode {
Aaa Bee Cee Dee

}

celloMusic = \relative c {
\clef bass
\key ¢ \major
\time 4/4

dd g fis8 e d4
}

\score{
<<
\new Voice = "one" {
\autoBeam0ff
\sopranoMusic
}
\new Lyrics \lyricsto "one" \sopranolLyrics
>>
\layout { }
\midi { }
}
This is looking promising, but the cello part won’t appear in the score — we haven’t used it
in the \score section. If we want the cello part to appear under the soprano part, we need to
add

\new Staff \celloMusic

underneath the soprano stuff. We also need to add << and >> around the music — that tells
LilyPond that there’s more than one thing (in this case, Staff) happening at once. The \score
looks like this now

\score{

Chapter 3: Putting it all together 36

<<
<<
\new Voice = "one" {
\autoBeamOff
\sopranoMusic
}
\new Lyrics \lyricsto "one" \sopranoLyrics
>>
\new Staff \celloMusic
>>
\layout { }
\midi { }

}

This looks a bit messy; the indentation is messed up now. That is easily fixed. Here’s the
complete soprano and cello template.

\version "2.10.10"
sopranoMusic = \relative c' {
\clef treble
\key ¢ \major
\time 4/4

ad b cd

sopranoLyrics = \lyricmode {
Aaa Bee Cee Dee

¥

celloMusic = \relative c {
\clef bass
\key c \major
\time 4/4

dd g fis8 e d4
b

\score{
<<
<<
\new Voice = "one" {
\autoBeamOff
\sopranoMusic
}
\new Lyrics \lyricsto "one" \sopranoLyrics
>>
\new Staff \celloMusic
>>
\layout { }
\midi { }
}

Chapter 3: Putting it all together 37

()
)" 4
4\ f £)
'(\\ \ W
i — . — & —
[y, o &

Aaa Bee Cee Dee
6)
S Ta—

Z

| | | |

3.2 How LilyPond files work

The LilyPond input format is quite free-form, giving experienced users a lot of flexibility to
structure their files however they wish. However, this flexibility can make things confusing for
new users. This section will explain some of this structure, but may gloss over some details
in favor of simplicity. For a complete description of the input format, see Section 10.1.2 [File
structure], page 234.

Most examples in this manual are little snippets — for example
c4d abc

As you are (hopefully) aware by now, this will not compile by itself. These examples are
shorthand for complete examples. They all need at least curly braces to compile

{

cd abc

}

Most examples also make use of the \relative c' (or ¢c'') command. This is not necessary
to merely compile the examples, but in most cases the output will look very odd if you omit the
\relative c'.

\relative c'' {
cd abec

0

e) |

Now we get to the only real stumbling block: LilyPond input in this form is actually another
shorthand. Although it compiles and displays the correct output, it is shorthand for

\score {
\relative c'' {
c4d abc
}
}

A \score must begin with a single music expression. Remember that a music expression
could be anything from a single note to a huge
{
\new GrandStaff <<

insert the whole score of a Wagner opera in here
>>

Since everything is inside { ... }, it counts as one music expression.

The \score can contain other things, such as

Chapter 3: Putting it all together 38

\score {
{c'4abc'}
\layout { }
\midi { }
\header { }

}

Some people put some of those commands outside the \score block — for example, \header is
often placed above the \score. That’s just another shorthand that LilyPond accepts.

Another great shorthand is the ability to define variables. All the templates use this

melody = \relative c' {
c4d abc
}

\score {
{ \melody }
}

When LilyPond looks at this file, it takes the value of melody (everything after the equals
sign) and inserts it whenever it sees \melody. There’s nothing special about the names — it
could be melody, global, pianorighthand, or foofoobarbaz. You can use whatever variable
names you want. For more details, see Section 4.2 [Saving typing with identifiers and functions],
page 43.

For a complete definition of the input format, see Section 10.1.2 [File structure|, page 234.

3.3 Score is a single musical expression

In the previous section, Section 3.2 [How LilyPond files work]|, page 37, we saw the general
organization of LilyPond input files. But we seemed to skip over the most important part: how
do we figure out what to write after \score?

We didn’t skip over it at all. The big mystery is simply that there is no mystery. This line
explains it all:

A \score must begin with a single music expression.

You may find it useful to review Section 2.3.1 [Music expressions explained], page 22. In that
section, we saw how to build big music expressions from small pieces — we started from notes,
then chords, etc. Now we’re going to start from a big music expression and work our way down.

\score {
{ 7% this brace begins the overall music expression
\new GrandStaff <<
insert the whole score of a Wagner opera in here
>>
} % this brace ends the overall music expression
\layout { }
}
A whole Wagner opera would easily double the length of this manual, so let’s just do a singer
and piano. We don’t need a GrandStaff for this ensemble, so we shall remove it. We do need
a singer and a piano, though.

\score {

{

<<
\new Staff = "singer" <<
>>

Chapter 3: Putting it all together 39

\new PianoStaff = piano <<
>>
>>
}
\layout { }
}

Remember that we use << and >> to show simultaneous music. And we definitely want to
show the vocal part and piano part at the same time!

\score {
{
<<
\new Staff = "singer" <<
\new Voice = "vocal" { }
>>
\new Lyrics \lyricsto vocal \new Lyrics { }
\new PianoStaff = "piano" <<
\new Staff = "upper" { }
\new Staff = "lower" { }
>>
>>
}
\layout { }
}

Now we have a lot more details. We have the singer’s staff: it contains a Voice (in LilyPond,
this term refers to a set of notes, not necessarily vocal notes — for example, a violin generally
plays one voice) and some lyrics. We also have a piano staff: it contains an upper staff (right
hand) and a lower staff (left hand).

At this stage, we could start filling in notes. Inside the curly braces next to \new Voice =
vocal, we could start writing

\relative c'' {
ad b cd
}

But if we did that, the \score section would get pretty long, and it would be harder to
understand what was happening. So let’s use identifiers (or variables) instead.

melody = { }
text = { }
upper = { }
lower = { }
\score {
{
<<
\new Staff = "singer" <<
\new Voice = "vocal" { \melody }
>>
\new Lyrics \lyricsto vocal \new Lyrics { \text }
\new PianoStaff = "piano" <<

\new Staff = "upper" { \upper }
\new Staff = "lower" { \lower }
>>
>>

Chapter 3: Putting it all together 40

}
\layout { }
}
Remember that you can use almost any name you like. The limitations on identifier names are
detailed in Section 10.1.2 [File structure], page 234.

When writing a \score section, or when reading one, just take it slowly and carefully. Start
with the outer layer, then work on each smaller layer. It also really helps to be strict with
indentation — make sure that each item on the same layer starts on the same horizontal position
in your text editor!

3.4 An orchestral part

In orchestral music, all notes are printed twice. Once in a part for the musicians, and once in a
full score for the conductor. Identifiers can be used to avoid double work. The music is entered
once, and stored in a variable. The contents of that variable is then used to generate both the
part and the full score.

It is convenient to define the notes in a special file. For example, suppose that the file
‘horn-music.ly’ contains the following part of a horn/bassoon duo

hornNotes = \relative c {
\time 2/4
r4 £f8 a cis4d f e d
}
Then, an individual part is made by putting the following in a file

\include "horn-music.ly"

\header {
instrument = "Horn in F"
}
{
\transpose f c' \hornNotes
}
The line

\include "horn-music.ly"

substitutes the contents of ‘horn-music.ly’ at this position in the file, so hornNotes is defined
afterwards. The command \transpose f c' indicates that the argument, being \hornNotes,
should be transposed by a fifth upwards. Sounding ‘f’ is denoted by notated c', which cor-
responds with the tuning of a normal French Horn in F. The transposition can be seen in the
following output

I(‘\) P S— o |
S Sma— |
() P !

In ensemble pieces, one of the voices often does not play for many measures. This is denoted
by a special rest, the multi-measure rest. It is entered with a capital ‘R’ followed by a duration
(1 for a whole note, 2 for a half note, etc.). By multiplying the duration, longer rests can be
constructed. For example, this rest takes 3 measures in 2/4 time

R2%3

When printing the part, multi-rests must be condensed. This is done by setting a run-time
variable

Chapter 3: Putting it all together 41

\set Score.skipBars = ##t

This command sets the property skipBars in the Score context to true (##t). Prepending the
rest and this option to the music above, leads to the following result

o) 3
o

[an YN A
ANIVANES 3

oJ

lnd

N

ey

i

s va vl

The score is made by combining all of the music together. Assuming that the other voice is
in bassoonNotes in the file ‘bassoon-music.ly’, a score is made with

\include "bassoon-music.ly"
\include "horn-music.ly"

<<
\new Staff \hornNotes
\new Staff \bassoonNotes

>>
leading to
o)
s S o— - _— — i
(ot € . ,
oJ - 4
;:"' F
Iy '.‘
— by 2 B
— St —

\

More in-depth information on preparing parts and scores can be found in the notation manual;
see Section 8.3 [Orchestral music], page 195.

Setting run-time variables (‘properties’) is discussed in Section 9.2.3 [Changing context prop-
erties on the fly], page 220.

Chapter 4: Working on LilyPond projects 42

4 Working on LilyPond projects

This section explains how to solve or avoid certain common problems. If you have programming
experience, many of these tips may seem obvious, but it is still advisable to read this chapter.

4.1 Suggestions for writing LilyPond files

Now you’re ready to begin writing larger LilyPond files — not just the little examples in the
tutorial, but whole pieces. But how should you go about doing it?

As long as LilyPond can understand your files and produces the output that you want, it
doesn’t matter what your files look like. However, there are a few other things to consider when
writing lilypond files.

e What if you make a mistake? The structure of a lilypond file can make certain errors easier
(or harder) to find.

e What if you want to share your files with somebody else? In fact, what if you want to alter
your own files in a few years? Some lilypond files are understandable at first glance; other
files may leave you scratching your head for an hour.

e What if you want to upgrade your lilypond file for use with a later version of lilypond? The
input syntax changes occasionally as lilypond improves. Most changes can be done auto-
matically with convert-1y, but some changes might require manual assistance. Lilypond
files can be structured in order to be easier (or header) to update.

4.1.1 General suggestions

Here are a few suggestions that can help you to avoid or fix problems:

e Include \version numbers in every file. Note that all templates contain a \version
"2.10.10" string. We highly recommend that you always include the \version, no matter
how small your file is. Speaking from personal experience, it’s quite frustrating to try to
remember which version of LilyPond you were using a few years ago. convert-1y requires
you to declare which version of LilyPond you used.

e Include checks: Section 6.2.5 [Bar check]|, page 68, Section 6.1.7 [Octave check|, page 63
and Section 6.2.6 [Barnumber check], page 69. If you include checks every so often, then if
you make a mistake, you can pinpoint it quicker. How often is “every so often”? It depends
on the complexity of the music. For very simple music, perhaps just once or twice. For very
complex music, perhaps every bar.

e One bar per line of text. If there is anything complicated, either in the music itself or in
the output you desire, it’s often good to write only one bar per line. Saving screen space
by cramming eight bars per line just isn’t worth it if you have to ‘debug’ your files.

e Comment your files. Use either bar numbers (every so often) or references to musical themes
(“second theme in violins,” “fourth variation”, etc). You may not need comments when
you're writing the piece for the first time, but if you want to go back to change something
two or three years later, or if you pass the source over to a friend, it will be much more
challenging to determine your intentions or how your file is structured if you didn’t comment
the file.

e Indent your braces. A lot of problems are caused by an imbalance in the number of { and
.
e Explicity add durations at the beginnings of sections and identifiers. If you specify c4 d e

at the beginning of a phrase (instead of just ¢ d e) you can save yourself some problems if
you rearrange your music later.

e Separate tweaks from music definitions. See Section 4.2 [Saving typing with identifiers and
functions], page 43 and Section 4.3 [Style sheets], page 45.

Chapter 4: Working on LilyPond projects 43

4.1.2 Typesetting existing music

If you are entering music from an existing score (i.e., typesetting a piece of existing sheet music),

e Enter one manuscript (the physical copy) system at a time (but still only one bar per line
of text), and check each system when you finish it. You may use the showLastLength
command to speed up processing — see Section 10.5 [Skipping corrected music|, page 245.

e Define mBreak = { \break } and insert \mBreak in the input file whenever the manuscript
has a line break. This makes it much easier to compare the LilyPond music to the original
music. When you are finished proofreading your score, you may define mBreak = { } to
remove all those line breaks. This will allow LilyPond to place line breaks wherever it feels
are best.

4.1.3 Large projects

When working on a large project, having a clear structure to your lilypond files becomes vital.

e Use an identifier for each voice, with a minimum of structure inside the definition. The
structure of the \score section is the most likely thing to change; the violin definition is
extremely unlikely to change in a new version of LilyPond.

violin = \relative c'' {
g4 c'8. el6
}
\score {
\new GrandStaff {
\new Staff {
\violin
}

}
+

e Separate tweaks from music definitions. This point was made in Section 4.1.1 [General
suggestions|, page 42, but for large projects it is absolutely vital. We might need to change
the definition of fthenp, but then we only need to do this once, and we can still avoid
touching anything inside violin.

fthenp = _\markup{
\dynamic f \italic \small { 2nd } \hspace #0.1 \dynamic p }
violin = \relative c'' {
g4\fthenp c'8. el6
}

4.2 Saving typing with identifiers and functions
By this point, you’ve seen this kind of thing:

hornNotes = \relative c'' { c4 b dis ¢ }
\score {

{
\hornNotes

Chapter 4: Working on LilyPond projects 44

You may even realize that this could be useful in minimalist music:
fragh = \relative c'' { a4 a8. b16 }
fragB = \relative c'' { a8. gisl6 eesd }
violin = \new Staff { \fragA \fragA \fragB \fraghA }
\score {

{

\violin

) | - = | —
G C e e te ot sy

d
v
Q@

However, you can also use these identifiers (also known as variables, macros, or (user-defined)
command) for tweaks:

dolce = \markup{ \italic \bold dolce }
padText = { \once \override TextScript #'padding = #5.0 }
fthenp=_\markup{ \dynamic f \italic \small { 2nd } \hspace #0.1 \dynamic p }
violin = \relative c'' {
\repeat volta 2 {

c4._\dolce b8 a8 g a b |

\padText

c4.”"hi there!" d8 e' f g d |

c,4.\fthenp b8 c4 c-. |

}
}
\score {
{
\violin
}
\layout{ragged-right=##t}
}
hi there! .
P B
A I o e .
. o | @ ') . i
— | ——
dolce J2nd p

These identifiers are obviously useful for saving typing. But they’re worth considering even
if you only use them once — they reduce complexity. Let’s look at the previous example without
any identifiers. It’s a lot harder to read, especially the last line.

violin = \relative c'' {
\repeat volta 2 {
c4._\markup{ \italic \bold dolce } b8 a8 g a b |
\once \override TextScript #'padding = #5.0
c4.”"hi there!" d8 e' f g d |
c,4.\markup{ \dynamic f \italic \small { 2nd }

Chapter 4: Working on LilyPond projects 45

\hspace #0.1 \dynamic p } b8 c4 c-. |
}
}
So far we’ve seen static substitution — when LilyPond sees \padText, it replaces it with the
stuff that we’ve defined it to be (ie the stuff to the right of padtext=).

LilyPond can handle non-static substitution, too (you can think of these as functions).

padText =
#(define-music-function (parser location padding) (number?)
#{
\once \override TextScript #'padding = #$padding
#1)
\relative c''' {

c4”"piu mosso" b a b
\padText #1.8

c4""piu mosso" d e £
\padText #2.6

c4”"piu mosso" fis a g

}
. piu mosso P MOS80
plu mosso o £ #._ £ 9
N 2 o ,0 2 £t 2" EE
—
[(YA W]
ANV,
oJ

Using identifiers is also a good way to reduce work if the LilyPond input syntax changes (see
Section 4.4 [Updating old files], page 48). If you have a single definition (such as \dolce) for all
your files (see Section 4.3 [Style sheets], page 45), then if the syntax changes, you only need to
update your single \dolce definition, instead of making changes throughout every .1y file.

4.3 Style sheets

The output that LilyPond produces can be heavily modified; see Chapter 5 [Tweaking output],
page 51 for details. But what if you have many files that you want to apply your tweaks to? Or
what if you simply want to separate your tweaks from the actual music? This is quite easy to
do.

Let’s look at an example. Don’t worry if you don’t understand the parts with all the #().
This is explained in Section 5.6 [Advanced tweaks with Scheme], page 57.

mpdolce = #(make-dynamic-script (markup #:hspace 1 #:translate (cons 5 0)
#:1line(#:dynamic "mp" #:text #:italic "dolce")))
tempoMark = #(define-music-function (parser location markp) (string?)
#{
\once \override Score . RehearsalMark #'self-alignment-X = #left
\once \override Score . RehearsalMark #'no-spacing-rods = ##t
\mark \markup { \bold $markp }
#3})

\relative c'' {
\tempo 4=50
a4.\mpdolce d8 cis4--\glissando a | b4 bes a2

Chapter 4: Working on LilyPond projects 46

\tempoMark "Poco piu mosso"
cis4.\< d8 e4 fis | g8(\! fis)-. e(d)-. cis2

}
A J| =50 | Poco piuunos .
:éﬁjl-)11_ l _lf_i}f 7 ﬁ - ')_ i ——— ul
U | | |

mp dolce —_

There are some problems with overlapping output; we’ll fix those using the techniques in
Section 5.1 [Moving objects], page 51. But let’s also do something about the mpdolce and
tempoMark definitions. They produce the output we desire, but we might want to use them
in another piece. We could simply copy-and-paste them at the top of every file, but that’s an
annoyance. It also leaves those definitions in our music files, and I personally find all the #()
somewhat ugly. Let’s hide them in another file:

%kl save this to a file called "definitioms.ly"
mpdolce = #(make-dynamic-script (markup #:hspace 1 #:translate (cons 5 0)
#:1line(#:dynamic "mp" #:text #:italic "dolce")))
tempoMark = #(define-music-function (parser location markp) (string?)
#{
\once \override Score . RehearsalMark #'self-alignment-X = #left
\once \override Score . RehearsalMark #'no-spacing-rods = ##t
\mark \markup { \bold $markp }
#3})

Now let’s modify our music (let’s save this file as ‘"music.ly"’).

\include "definitions.ly"

\relative c'' {
\tempo 4=50
a4.\mpdolce d8 cis4--\glissando a | b4 bes a2
\once \override Score.RehearsalMark #'padding = #2.0
\tempoMark "Poco piu mosso"
cis4.\< d8 e4 fis | g8(\! fis)-. e(d)-. cis2

}
J Poco piu mosso
() |=50 | /\. %
)" 4 | — | 1 1h
/e i e e i s
v mp dolce b - |

That looks better, but let’s make a few changes. The glissando is hard to see, so let’s make
it thicker and closer to the noteheads. Let’s put the metronome marking above the clef, instead
of over the first note. And finally, my composition professor hates "C" time signatures, so we’d
better make that "4/4" instead.

Don’t change ‘music.ly’, though. Replace our ‘definitions.ly’ with this:

%h% definitions.ly

mpdolce = #(make-dynamic-script (markup #:hspace 1 #:translate (cons 5 0)
#:1line(#:dynamic "mp" #:text #:italic "dolce")))

tempoMark = #(define-music-function (parser location markp) (string?)

Chapter 4: Working on LilyPond projects 47

#{
\once \override Score . RehearsalMark #'self-alignment-X = #left
\once \override Score . RehearsalMark #'no-spacing-rods = ##t
\mark \markup { \bold $markp }

#31)

\layout{

\context { \Score
\override MetronomeMark #'extra-offset = #'(-9 . 0)
\override MetronomeMark #'padding = #'3

}

\context { \Staff
\override TimeSignature #'style = #'numbered

}

\context { \Voice
\override Glissando #'thickness = #3
\override Glissando #'gap = #0.1

}
¥
J=50 Poco piu mosso
() | #' /\; -
0)1'!I I _lp_b'lf z _:_I'u.j'l —1 : i : ——
Y mp dolce | | I< |

That looks nicer! But now suppose that I want to publish this piece. My composition
professor doesn’t like "C" time signatures, but I'm somewhat fond of them. Let’s copy the
current ‘definitions.ly’ to ‘web-publish.ly’ and modify that. Since this music is aimed at
producing a pdf which will be displayed on the screen, we’ll also increase the overall size of the
output.

%ht% definitions.ly
mpdolce = #(make-dynamic-script (markup #:hspace 1 #:translate (cons 5 0)
#:1line(#:dynamic "mp" #:text #:italic "dolce")))
tempoMark = #(define-music-function (parser location markp) (string?)
#{
\once \override Score . RehearsalMark #'self-alignment-X = #left
\once \override Score . RehearsalMark #'no-spacing-rods = ##t
\mark \markup { \bold $markp }
#1)

#(set-global-staff-size 23)
\layout{
\context { \Score
\override MetronomeMark #'extra-offset = #'(-9 . 0)
\override MetronomeMark #'padding = #'3
}
\context { \Staff
}
\context { \Voice
\override Glissando #'thickness = #3

Chapter 4: Working on LilyPond projects 48

\override Glissando #'gap = #0.1

}
}
J=50 Poco piu mosso
Q = I iy) —
1t e B
Y mp dolce] R

Now in our music, [simply replace \include "definitions.ly" with \include
"web-publish.ly". Of course, we could make this even more convenient. We could make
a ‘definitions.ly’ file which contains only the definitions of mpdolce and tempoMark,
a ‘web-publish.ly’ file which contains only the \layout section listed above, and a
‘university.ly’ file which contains only the tweaks to produce the output that my professor
prefers. The top of ‘music.ly’ would then look like this:

\include "definitions.ly"

%%% Only uncomment one of these two lines!
\include "web-publish.ly"
%\include "university.ly"

This approach can be useful even if you are only producing one set of parts. I use half
a dozen different “style sheet” files for my projects. I begin every music file with \include
"../global.ly", which contains

%kt global.ly

\version "2.10.10"

#(ly:set-option 'point-and-click #f)
\include "../init/init-defs.ly"
\include "../init/init-layout.ly"
\include "../init/init-headers.ly"
\include "../init/init-paper.ly"

4.4 Updating old files

The LilyPond input syntax occasionally changes. As LilyPond itself improves, the syntax (input
language) is modified accordingly. Sometimes these changes are made to make the input easier
to read and write or sometimes the changes are made to accomodate new features of LilyPond.

LilyPond comes with a file that makes this updating easier: convert-ly. For details about
how to run this program, see Section 13.3 [Updating files with convert-ly|, page 290.

Unfortunately, convert-1y cannot handle all input changes. It takes care of simple search-
and-replace changes (such as raggedright becoming ragged-right), but some changes are too
complicated. The syntax changes that convert-1y cannot handle are listed in Section 13.3
[Updating files with convert-ly]|, page 290.

Chapter 4: Working on LilyPond projects 49

For example, in LilyPond 2.4 and earlier, accents and non-English letters were entered using
LaTeX — for example, "No\"el" (this would print the French word for ‘Christmas’). In LilyPond
2.6 and above, the special "é" must be entered directly into the LilyPond file as an UTF-8
character. convert-1y cannot change all the LaTeX special characters into UTF-8 characters;
you must manually update your old LilyPond files.

4.5 Troubleshooting (taking it all apart)

Sooner or later, you will write a file that LilyPond cannot compile. The messages that LilyPond
gives may help you find the error, but in many cases you need to do some investigation to
determine the source of the problem.

The most powerful tools for this purpose are the single line comment (indicated by %) and
the block comment (indicated by %{ ... %}). If you don’t know where a problem is, start
commenting out huge portions of your input file. After you comment out a section, try compiling
the file again. If it works, then the problem must exist in the portion you just commented. If it
doesn’t work, then keep on commenting out material until you have something that works.

In an extreme case, you might end up with only

\score {
<<
% \melody
% \harmony

% \bass
>>

\layout{}
}

(in other words, a file without any music)

If that happens, don’t give up. Uncomment a bit — say, the bass part — and see if it works.
If it doesn’t work, then comment out all of the bass music (but leave \bass in the \score
uncommented.

bass = \relative c' {

hi

cd ccc
dddd
ht
}

Now start slowly uncommenting more and more of the bass part until you find the problem
line.

Another very useful debugging technique is constructing Section 4.6 [Minimal examples],
page 49.

4.6 Minimal examples

A minimal example is an example which is as small as possible. These examples are much easier
to understand than long examples. Minimal examples are used for

e Bug reports
e Sending a help request to mailists
e Adding an example to the LilyPond Snippet Repository

To construct an example which is as small as possible, the rule is quite simple: remove
anything which is not necessary. When trying to remove unnecessary parts of a file, it is a very

http://lsr.dsi.unimi/2.it/

Chapter 4: Working on LilyPond projects 50

good idea to comment out lines instead of deleting them. That way, if you discover that you
actually do need some lines, you can uncomment them, instead of typing them in from scratch.

There are two exceptions to the “as small as possible” rule:
e Include the \version number.

e If possible, use \paper{ ragged-right=##t } at the top of your example.

The whole point of a minimal example is to make it easy to read:

e Avoid using complicated notes, keys, or time signatures, unless you wish to demonstrate
something is about the behavior of those items.

e Do not use \override commands unless that is the point of the example.

Chapter 5: Tweaking output 51

5 Tweaking output

This chapter discusses how to modify output. LilyPond is extremely configurable; virtually
every fragment of output may be changed.

5.1 Moving objects

This may come as a surprise, but LilyPond is not perfect. Some notation elements can overlap.
This is unfortunate, but (in most cases) is easily solved.

e4"\markup{ \italic ritenuto } g b e

-
0 ritegu® —
+l?_ [I
@ \ I
oJ

The easiest solution is to increase the distance between the object (in this case text, but it
could easily be fingerings or dynamics instead) and the note. In LilyPond, this is called the
padding property; it is measured in staff spaces. For most objects, this value is around 1.0 or
less (it varies with each object). We want to increase it, so let’s try 1.5

\once \override TextScript #'padding = #1.5
e4"\markup{ \italic ritenuto } g b e

A ritezulm

L |

A,

5

That looks better, but it isn’t quite big enough. After experimenting with a few values,
we think 2.3 is the best number in this case. However, this number is merely the result of
experimentation and my personal taste in notation. Try the above example with 2.3... but also
try higher (and lower) numbers. Which do you think looks the best?

The staff-padding property is closely related. padding controls the minimum amount of
space between an object and the nearest other object (generally the note or the staff lines);
staff-padding controls the minimum amount of space between an object and the staff. This
is a subtle difference, but you can see the behavior here.

c4”"piu mosso" b ab

\once \override TextScript #'padding = #2.6
c4”"piu mosso" d e £

\once \override TextScript #'staff-padding = #2.6
c4”"piu mosso" fis a g

\break

c'4”"piu mosso" b a b

\once \override TextScript #'padding = #2.6
c4”"piu mosso" d e f

\once \override TextScript #'staff-padding = #2.6
c4”"piu mosso" fis a g

piu mosso piu mosso
piu mosso -
0 o o

GErre it

e) | | | |

Chapter 5: Tweaking output 52

piu mosso

piu mosso o #» Didgofoe

roe» AL 2'C L

zln N e A s A
)’ 4
4\
[fanY
ANV
oJ

Another solution gives us complete control over placing the object — we can move it horizon-
tally or vertically. This is done with the extra-offset property. It is slightly more complicated
and can cause other problems. When we move objects with extra-offset, the movement is
done after LilyPond has placed all other objects. This means that the result can overlap with
other objects.

\once \override TextScript #'extra-offset = #'(1.0 . -1.0)
e4"\markup{ \italic ritenuto } g b e

T

Q .tuql&:,' o

{rs—C |
N3,
e

With extra-offset, the first number controls the horizontal movement (left is negative);
the second number controls the vertical movement (up is positive). After a bit of experimenting,
we decided that these values look good

\once \override TextScript #'extra-offset = #'(-1.6 . 1.0)
e4"\markup{ \italic ritenuto } g b e

i)

ritenuto
0 o 1

Ao

[{an W W]
NI,
e

Again, these numbers are simply the result of a few experiments and looking at the output. You
might prefer the text to be slightly higher, or to the left, or whatever. Try it and look at the
result!

One final warning: in this section, we used

\once \override TextScript ...

This tweaks the display of text for the next note. If the note has no text, this tweak does
nothing (and does not wait until the next bit of text). To change the behavior of everything
after the command, omit the \once. To stop this tweak, use a \revert. This is explained in
depth in Section 9.3 [The \override command], page 228.

c4”"piu mosso" b

\once \override TextScript #'padding = #2.6
a4 b

c4”"piu mosso" d e f

\once \override TextScript #'padding = #2.6

c4”"piu mosso" d e f

c4”"piu mosso" d e £

\break

\override TextScript #'padding = #2.6
c4""piu mosso" d e f

c4""piu mosso" d e £

\revert TextScript #'padding

Chapter 5: Tweaking output 53

c4”"piu mosso" d e f

_ _ piu mosso)
piu mosso plu._mq%sg_ e ® 2 piu :_n_g@sg_
O ::f.q,]o. e 2 2O
£\ r) | |
[(v YA W]
A\ V4
[y
piu mosso piu mosso
o £ o £ DPlUINOSSQ
5 28 EL o221 o2 :(E E
)4
7\
[[an)
ANV
oJ
See also

This manual: Section 9.3 [The \override command], page 228, Section 5.3 [Common tweaks],
page H4.

5.2 Fixing overlapping notation

In Section 5.1 [Moving objects|, page 51, we saw how to move a TextScript object. The same
mechanism can be used to move other types of objects; simply replace TextScript with the
name of another object.

To find the object name, look at the “see also” at bottom of the relevant documentation

page. For example, at the bottom of Section 6.6.3 [Dynamics]|, page 98, we see

See also

Program reference: DynamicText, Hairpin. Vertical positioning of these symbols is
handled by DynamicLineSpanner.

So to move dynamics around vertically, we use
\override DynamicLineSpanner #'padding = #2.0

We cannot list every object, but here is a list of the most common objects.

Object type Object name
Dynamics (vertically) DynamicLineSpanner
Dynamics (horizontally) DynamicText

Ties Tie

Slurs Slur

Articulations Script

Fingerings Fingering

Text e.g. ~"text" TextScript

Rehearsal / Text marks RehearsalMark

Chapter 5: Tweaking output 54

5.3 Common tweaks

Some overrides are so common that predefined commands are provided as short-cuts, such as
\slurUp and \stemDown. These commands are described in the Notation Reference under the
appropriate sections.

The complete list of modifications available for each type of object (like slurs or beams) are
documented in the Program Reference. However, many layout objects share properties which
can be used to apply generic tweaks.

e The padding property can be set to increase (or decrease) the distance between symbols
that are printed above or below notes. This applies to all objects with side-position-

interface.
c2\fermata
\override Script #'padding = #3
b2\fermata
')

[)

)" 4

g\ r £)

[fan YA W] |

ANV |

e < -

% This will not work, see below:

\override MetronomeMark #'padding = #3
\tempo 4=120

cl

% This works:

\override Score.MetronomeMark #'padding = #3
\tempo 4=80

d1

J=80

o) J=120
)" 4

(€

ANV

[y -© O

Note in the second example how important it is to figure out what context handles a certain
object. Since the MetronomeMark object is handled in the Score context, property changes
in the Voice context will not be noticed. For more details, see Section 9.3.1 [Constructing
a tweak], page 228.

e The extra-offset property moves objects around in the output; it requires a pair of
numbers. The first number controls horizontal movement; a positive number will move the
object to the right. The second number controls vertical movement; a positive number will
move it higher. The extra-offset property is a low-level feature: the formatting engine is
completely oblivious to these offsets.

In the following example, the second fingering is moved a little to the left, and 1.8 staff
space downwards:

\stemUp

£-5

\once \override Fingering
#'extra-offset = #'(-0.3 . -1.8)

-5

Chapter 5: Tweaking output 55

[5
)" 4 5
4\ y £)

Z%?:iﬁ:l:l__

e Setting the transparent property will cause an object to be printed in ‘invisible ink’: the
object is not printed, but all its other behavior is retained. The object still takes up space,
it takes part in collisions, and slurs, ties, and beams can be attached to it.

The following example demonstrates how to connect different voices using ties. Normally,
ties only connect two notes in the same voice. By introducing a tie in a different voice,

and blanking the first up-stem in that voice, the tie appears to cross voices:
<< {
\once \override Stem #'transparent = ##t
b8~ b8\noBeam
F\\ {
b[g8]
T >>

To make sure that the just blanked stem doesn’t squeeze the too much tie, we also lengthen
the stem, by setting the length to 8,
<< {
\once \override Stem #'transparent = ##t
\once \override Stem #'length = #8
b8~ b8\noBeam
F\\ {
b[g8l
} >

Distances in LilyPond are measured in staff-spaces, while most thickness properties are mea-
sured in line-thickness. Some properties are different; for example, the thickness of beams are
measured in staff-spaces. For more information, see the relevant portion of the program refer-
ence.

5.4 Default files

The Program Reference documentation contains a lot of information about LilyPond, but even
more information can be gathered from looking at the internal LilyPond files.

Some default settings (such as the definitions for \header{}s) are stored as .1y files. Other
settings (such as the definitions of markup commands) are stored as . scm (Scheme) files. Further
explanation is outside the scope of this manual; users should be warned that a substantial amount
of technical knowledge or time is required to understand these files.

Chapter 5: Tweaking output 56

e Linux: ‘installdir/lilypond/usr/share/lilypond/current/’

e OSX: ‘installdir/LilyPond.app/Contents/Resources/share/lilypond/current/’.
To access this, either cd into this directory from the Terminal, or control-click on the
LilyPond application and select "Show Package Contents".

e Windows: ‘installdir/LilyPond/usr/share/lilypond/current/’

The ‘ly/’ and ‘scm/’ directories will be of particular interest. Files such as
‘ly/property-init.ly’ and ‘ly/declarations-init.ly’ define all the common tweaks.

5.5 Fitting music onto fewer pages

Sometimes you can end up with one or two staves on a second (or third, or fourth...) page. This
is annoying, especially if you look at previous pages and it looks like there is plenty of room left
on those.

When investigating layout issues, annotate-spacing is an invaluable tool. This command
prints the values of various layout spacing commands; see Section 11.6 [Displaying spacing],
page 270 for more details. From the output of annotate-spacing, we can see which margins
we may wish to alter.

Other than margins, there are a few other options to save space:

e You may tell LilyPond to place systems as close together as possible (to fit as many systems
as possible onto a page), but then to space those systems out so that there is no blank space
at the bottom of the page.

\paper {
between-system-padding = #0.1
between-system-space = #0.1
ragged-last-bottom = ##f
ragged-bottom = ##f

}

e You may force the number of systems (i.e., if LilyPond wants to typeset some music with
11 systems, you could force it to use 10).
\paper {
system-count = #10

}

e Avoid (or reduce) objects which increase the vertical size of a system. For example, volta
repeats (or alternate repeats) require extra space. If these repeats are spread over two
systems, they will take up more space than one system with the volta repeats and another
system without.

Another example is moving dynamics which “stick out” of a system.

\relative c' {
e4 c g\f ¢

\override DynamicLineSpanner #'padding = #-1.8
\override DynamicText #'extra-offset = #'(-2.1 . 0)
ed c g\f ¢
3

0

"4

£\ r £}

[[av Y W

ANV

eJ o o,

Sy

Chapter 5: Tweaking output 57

e Alter the horizontal spacing via SpacingSpanner. See Section 11.5.3 [Changing horizontal
spacing], page 267 for more details.

\score {
\relative c'' {
gdee2 | f4dd2 | c4def | g4 geg2l
giee2 | f4dd2 | cdeggl c,1|
ddddd| ddef2 | edeece | ed fg2|
gdee2 | f4dd2 | cdegg |l c,1|

}
\layout {
\context {
\Score
\override SpacingSpanner
#'base-shortest-duration = #(ly:make-moment 1 4)
}
}
}
o) .
)’ 4 | | | | |
4\ r @) | | | | |
S — o oo
oJ 2@ ¢ o o
0
4 . P— ! !
£\ | I I | | | | |
'(\\ | I I | d | I‘
:) oo @ oo o G .‘..‘ ©

5.6 Advanced tweaks with Scheme

We have seen how LilyPond output can be heavily modified using commands like \override
TextScript #'extra-offset = (1 . -1). But we have even more power if we use Scheme.
For a full explantion of this, see the Appendix B [Scheme tutorial], page 310 and Chapter 12
[Interfaces for programmers|, page 271.

We can use Scheme to simply \override commands,

padText = #(define-music-function (parser location padding) (number?)

#{

\once \override TextScript #'padding = #$padding
#1)
\relative c''' {

c4”"piu mosso" b a b
\padText #1.8

c4""piu mosso" d e £
\padText #2.6

c4”"piu mosso" fis a g

piu mosso

o

iu mosso PV MOS89

Io)- ol #.'

Feg rFLrrTTreE =
£

HIL
e

N (o

G e
-

Chapter 5: Tweaking output 58

We can use it to create new commands,

tempoMark = #(define-music-function (parser location padding marktext)
(number? string?)
#{
\once \override Score . RehearsalMark #'padding = $padding
\once \override Score . RehearsalMark #'no-spacing-rods = ##t
\mark \markup { \bold $marktext }
#1)

\relative c'' {
c2 e
\tempoMark #3.0 #"Allegro"
g c

}

Allegro

®

7

N (o

e
—

l()
I
I

Even music expressions can be passed in.

pattern = #(define-music-function (parser location x y) (ly:music? ly:music?)
#{

$x e8 a b $y b a e
#1)

\relative c''{

\pattern c8 c8\f

\pattern {d16 dis} { ais16-> b\p }
}

0 o pl e, . il ﬂ? h.f

. £
ig 15 — A | ' J I\lF
P

© f

5.7 Avoiding tweaks with slower processing

1‘

LilyPond can perform extra checks while it processes files. These commands will take extra
time, but the result may require fewer manual tweaks.

%% makes sure text scripts and lyrics are within the paper margins
\override Score.PaperColumn #'keep-inside-line = ##t

Chapter 6: Basic notation 59

6 Basic notation

This chapter explains how to use basic notation features.

6.1 Pitches

This section discusses how to specify the pitch of notes.

6.1.1 Normal pitches
A pitch name is specified using lowercase letters a through g. An ascending C-major scale is
engraved with

\clef bass
cdefgabc'

Br - .

The note name c is engraved one octave below middle C.

\clef treble

cl

\clef bass

cl
0
4\ r £) ‘)E
AU Z [@)
ANV
Y p—

o

The optional octave specification takes the form of a series of single quote (‘’’) characters
or a series of comma (‘,’) characters. Each ' raises the pitch by one octave; each , lowers the
pitch by an octave.

\clef treble

c'c''e' gd''d dc
\clef bass

c, ¢c,, e, gd,, d, dc

0} |
)" 4) o |
I C = e f) . o
g et e < |
¥ 4 €3 =
* @ p= &

An alternate method may be used to declare which octave to engrave a pitch; this method
does not require as many octave specifications (' and ,). See Section 6.1.6 [Relative octaves],

page 62.

Chapter 6: Basic notation 60

6.1.2 Accidentals
A sharp is formed by adding -is to the end of a pitch name and a flat is formed by adding -es.
Double sharps and double flats are obtained by adding -isis or -eses to a note name.

a2 ais a aes
a2 aisis a aeses

N
-
N
N
H
N
N
S=
N

|
I
]
(7

N (o

N
B33

Gz e
-

These are the Dutch note names. In Dutch, aes is contracted to as, but both forms are accepted.
Similarly, both es and ees are accepted

a2 as e es

n | |

"4 I PR | 1

4\ r)] | I I

[[Y W~ D7 | 1
ANV -~ b
U L= v

A natural will cancel the effect of an accidental or key signature. However, naturals are not
encoded into the note name syntax with a suffix; a natural pitch is shown as a simple note name

a4 aes a2

The input d e £ is interpreted as “print a D-natural, E-natural, and an F-natural,” regardless
of the key signature. For more information about the distinction between musical content and
the presentation of that content, see Section 2.2.2 [Accidentals and key signatures|, page 17.

\key d \major
defg
d e fis g

DO
L

Py . i
ik) | |

e e e

Commonly tweaked properties

In accordance with standard typesetting rules, a natural sign is printed before a sharp or
flat if a previous accidental needs to be cancelled. To change this behavior, use \set
Staff.extraNatural = ##f

ceses4 ces cis ¢
\set Staff.extraNatural = ##f
cesesd ces cis c

¢

Chapter 6: Basic notation 61

See also

Program reference: LedgerLineSpanner, NoteHead.

6.1.3 Cautionary accidentals

Normally accidentals are printed automatically, but you may also print them manually. A
reminder accidental can be forced by adding an exclamation mark ! after the pitch. A cautionary
accidental (i.e., an accidental within parentheses) can be obtained by adding the question mark
“?’ after the pitch. These extra accidentals can be used to produce natural signs, too.

cis cis cis! cis? ¢ ¢c? c! ¢

r @)
\ W]

1;4- & ﬁcb (1;)0- & (q)c» qo- &

G

See also

The automatic production of accidentals can be tuned in many ways. For more information, see
Section 9.1.1 [Automatic accidentals], page 213.

6.1.4 Micro tones

Half-flats and half-sharps are formed by adding -eh and -ih; the following is a series of Cs with
increasing pitches

\set Staff.extraNatural = ##f
ceseh ceh cih cisih

0

Vi

ANV
e) |

Micro tones are also exported to the MIDI file.

Bugs

There are no generally accepted standards for denoting three-quarter flats, so LilyPond’s symbol
does not conform to any standard.

6.1.5 Note names in other languages

There are predefined sets of note names for various other languages. To use them, include the
language specific init file. For example, add \include "english.ly" to the top of the input
file. The available language files and the note names they define are

Note Names sharp flat
nederlands.ly ¢ d e f g a besb -is -es
english.ly c d e f g a Dbf b -s/-sharp -f/-flat

-x (double)
deutsch.ly c d e f g a b h -is -es
norsk.ly c d e f£ g a b h -iss/-is -ess/-es
svenska.ly d e f g a b h -iss -ess
italiano.ly do re mi fa sol la sib si -d -b
catalan.ly do re mi fa sol la sib si -d/-s -b

espanol.ly do re mi fa sol la sib si -s -b

Chapter 6: Basic notation 62

6.1.6 Relative octaves

Octaves are specified by adding ' and , to pitch names. When you copy existing music, it is
easy to accidentally put a pitch in the wrong octave and hard to find such an error. The relative
octave mode prevents these errors by making the mistakes much larger: a single error puts the
rest of the piece off by one octave

\relative startpitch musicexpr
or

\relative musicexpr
c' is used as the default if no starting pitch is defined.

The octave of notes that appear in musicexpr are calculated as follows: if no octave changing
marks are used, the basic interval between this and the last note is always taken to be a fourth
or less. This distance is determined without regarding alterations; a fisis following a ceses
will be put above the ceses. In other words, a doubly-augmented fourth is considered a smaller
interval than a diminished fifth, even though the doubly-augmented fourth spans seven semitones
while the diminished fifth only spans six semitones.

The octave changing marks ' and , can be added to raise or lower the pitch by an extra
octave. Upon entering relative mode, an absolute starting pitch can be specified that will act
as the predecessor of the first note of musicexpr. If no starting pitch is specified, then middle C
is used as a start.

Here is the relative mode shown in action

\relative c'' {
bcdcbc bes a

ANV I I I I I I

e) | | | | | |

Octave changing marks are used for intervals greater than a fourth

\relative c'' {
cgcf, c' a,ce"

¥
0

e

-

oJ

—t

If the preceding item is a chord, the first note of the chord is used to determine the first note
of the next chord

\relative c' {

c <c e g>
<c' e g>
<c, e' g>
X
f a

Chapter 6: Basic notation 63

The pitch after \relative contains a note name.

The relative conversion will not affect \transpose, \chordmode or \relative sections in its
argument. To use relative within transposed music, an additional \relative must be placed
inside \transpose.

6.1.7 Octave check

Octave checks make octave errors easier to correct: a note may be followed by =quotes which
indicates what its absolute octave should be. In the following example,

\relative c'' { c='' b=' d4,=""' }

the d will generate a warning, because a d'' is expected (because b' to d'"' is only a third), but
a d' is found. In the output, the octave is corrected to be a d'' and the next note is calculated
relative to d'' instead of d'.

There is also an octave check that produces no visible output. The syntax
\octave pitch

This checks that pitch (without quotes) yields pitch (with quotes) in \relative mode com-
pared to the note given in the \relative command. If not, a warning is printed, and the octave
is corrected. The pitch is not printed as a note.

In the example below, the first check passes without incident, since the e (in relative mode)
is within a fifth of a'. However, the second check produces a warning, since the e is not within
a fifth of b'. The warning message is printed, and the octave is adjusted so that the following
notes are in the correct octave once again.

\relative c' {
e
\octave a'
\octave b'

¥

The octave of a note following an octave check is determined with respect to the note pre-
ceding it. In the next fragment, the last note is an a', above middle C. That means that the
\octave check passes successfully, so the check could be deleted without changing the output
of the piece.

\relative c' {
e
\octave b
a

0 |

R

oJ

6.1.8 Transpose
A music expression can be transposed with \transpose. The syntax is
\transpose from to musicexpr

This means that musicexpr is transposed by the interval between the pitches from and to:
any note with pitch from is changed to to.

For example, consider a piece written in the key of D-major. If this piece is a little too low
for its performer, it can be transposed up to E-major with

Chapter 6: Basic notation 64

\transpose d e ...

Consider a part written for violin (a C instrument). If this part is to be played on the A
clarinet (for which an A is notated as a C, and which sounds a minor third lower than notated),
the following transposition will produce the appropriate part

\transpose a c ...

\transpose distinguishes between enharmonic pitches: both \transpose c cis or
\transpose c des will transpose up half a tone. The first version will print sharps and the
second version will print flats

mus = { \key d \major cis d fis g }
\new Staff {

\clef "F" \mus

\clef "G"

\transpose c g' \mus

\transpose ¢ f' \mus

| e |
] &) @ | & |
| o |

N

=

\transpose may also be used to input written notes for a transposing instrument. Pitches
are normally entered into LilyPond in C (or “concert pitch”), but they may be entered in another
key. For example, when entering music for a B-flat trumpet which begins on concert D, one
would write

\transpose c bes { e4 ... }

To print this music in B-flat again (i.e., producing a trumpet part, instead of a concert pitch
conductor’s score) you would wrap the existing music with another transpose

\transpose bes ¢ { \transpose c bes { e4 ... } }

See also

Program reference: TransposedMusic.

Example: ‘input/test/smart-transpose.ly’.

Bugs

If you want to use both \transpose and \relative, you must put \transpose outside of
\relative, since \relative will have no effect on music that appears inside a \transpose.

6.1.9 Rests

Rests are entered like notes with the note name r
rl r2 r4 r8

()
_@D_e——_-_i_-f_

oJ

Whole bar rests, centered in middle of the bar, must be done with multi-measure rests. They
can be used for a single bar as well as many bars, and are discussed in Section 8.2.1 [Multi
measure rests|, page 184.

To explicitly specify a rest’s vertical position, write a note followed by \rest. A rest will be
placed in the position where the note would appear,

Chapter 6: Basic notation 65

a'4\rest d'4\rest

This makes manual formatting of polyphonic music much easier, since the automatic rest collision
formatter will leave these rests alone.
See also

Program reference: Rest.

6.1.10 Skips

An invisible rest (also called a ‘skip’) can be entered like a note with note name ‘s’ or with
\skip duration

ad a4 s4 a4 \skip 1 a4

(l | | | |
R FE
JJ

The s syntax is only available in note mode and chord mode. In other situations, for example,
when entering lyrics, you should use the \skip command
<<
\relative { a'2 a2 }

\new Lyrics \lyricmode { \skip 2 bla2 }
>>

bla

The skip command is merely an empty musical placeholder. It does not produce any output,
not even transparent output.

The s skip command does create Staff and Voice when necessary, similar to note and rest
commands. For example, the following results in an empty staff.

{s4 3}

The fragment { \skip 4 } would produce an empty page.

See also

Program reference: SkipMusic.

Chapter 6: Basic notation 66

6.2 Rhythms

This section discusses rhythms, durations, and bars.

6.2.1 Durations

In Note, Chord, and Lyrics mode, durations are designated by numbers and dots: durations are
entered as their reciprocal values. For example, a quarter note is entered using a 4 (since it is a
1/4 note), while a half note is entered using a 2 (since it is a 1/2 note). For notes longer than
a whole you must use the \longa and \breve commands

c'\breve

c'l ¢c'2 c'4 c'8 c'16 c'32 c'64 c'64

r\longa r\breve

rl r2 r4 r8 r16 r32 r64 r64

o o 4 JIMM

R RA L EE

If the duration is omitted then it is set to the previously entered duration. The default for
the first note is a quarter note.

{aaa2aadaalal

N (o

P
-

465 HF 44 o =

6.2.2 Augmentation dots

To obtain dotted note lengths, simply add a dot (‘.”) to the number. Double-dotted notes are
produced in a similar way.

a'd4b' c''4. b'8 a'4. b'4.. c''8.

Predefined commands

Dots are normally moved up to avoid staff lines, except in polyphonic situations. The following
commands may be used to force a particular direction manually

\dotsUp, \dotsDown, \dotsNeutral.

See also

Program reference: Dots, and DotColumn.

Chapter 6: Basic notation 67

6.2.3 Tuplets

Tuplets are made out of a music expression by multiplying all durations with a fraction
\times fraction musicexpr

The duration of musicexpr will be multiplied by the fraction. The fraction’s denominator will
be printed over the notes, optionally with a bracket. The most common tuplet is the triplet in
which 3 notes have the length of 2, so the notes are 2/3 of their written length

g'4 \times 2/3 {c'4 c¢' c'} d'4 d'4

—3

DO

r) I

I

Tuplets may be nested, for example,

\override TupletNumber #'text = #tuplet-number::calc-fraction-text
\times 4/6 {

ad a
\times 3/5 { a a a a a }
}
' ot —]
) I R R B NI
5 | | | | | | |
[Y)

Predefined commands
\tupletUp, \tupletDown, \tupletNeutral.

Commonly tweaked properties

The property tupletSpannerDuration specifies how long each bracket should last. With this,
you can make lots of tuplets while typing \times only once, thus saving lots of typing. In the
next example, there are two triplets shown, while \times was only used once

\set tupletSpannerDuration = #(ly:make-moment 1 4)
\times 2/3 { c8 c c ccc }

0

L

(D
oJ

For more information about make-moment, see Section 8.4.2 [Time administration|, page 203.
The format of the number is determined by the property text in TupletNumber. The default

prints only the denominator, but if it is set to the function tuplet-number: :calc-fraction-
text, num:den will be printed instead.

To avoid printing tuplet numbers, use

\times 2/3 { ¢8 ¢ ¢ } \times 2/3 { c8 ¢ c }
\override TupletNumber #'transparent = ##t
\times 2/3 { c8 ¢ ¢ } \times 2/3 { c8 c ¢ }

Chapter 6: Basic notation 68

0

ANV

v 3 3

J

Tuplet brackets can be made to run to prefatory matter or the next note

—5— —3—
See also

Program reference: TupletBracket, TupletNumber, and TimeScaledMusic.

Examples: ‘input/regression/tuplet-nest.ly’.

6.2.4 Scaling durations

You can alter the length of duration by a fraction N/M appending ‘*N/M’ (or ‘*N’ if M=1).
This will not affect the appearance of the notes or rests produced.

In the following example, the first three notes take up exactly two beats, but no triplet
bracket is printed.

\time 2/4

ad*2/3 gisd*2/3 ad*2/3
a4 ad adx2

bl6*4 c4

See also
This manual: Section 6.2.3 [Tuplets]|, page 67

6.2.5 Bar check

Bar checks help detect errors in the durations. A bar check is entered using the bar symbol, ‘|’.
Whenever it is encountered during interpretation, it should fall on a measure boundary. If it
does not, a warning is printed. In the next example, the second bar check will signal an error

\time 3/4 c2 e4 | g2 |
Bar checks can also be used in lyrics, for example
\lyricmode {
\time 2/4
Twin -- kle | Twin -- kle

¥

Failed bar checks are caused by entering incorrect durations. Incorrect durations often com-
pletely garble up the score, especially if the score is polyphonic, so a good place to start correcting
input is by scanning for failed bar checks and incorrect durations.

It is also possible to redefine the meaning of |. This is done by assigning a music expression
to pipeSymbol,

Chapter 6: Basic notation 69

pipeSymbol = \bar "||"

{c'2c" | c'2c" }

Q
4\
[anY
ANV
[Y) < & & &

r @)
\ W]

—~

7

6.2.6 Barnumber check

When copying large pieces of music, it can be helpful to check that the LilyPond bar number cor-
responds to the original that you are entering from. This can be checked with \barNumberCheck,
for example,

\barNumberCheck #123

will print a warning if the currentBarNumber is not 123 when it is processed.

6.2.7 Automatic note splitting

Long notes can be converted automatically to tied notes. This is done by replacing the Note_
heads_engraver by the Completion_heads_engraver. In the following examples, notes cross-
ing the bar line are split and tied.

\new Voice \with {
\remove "Note_heads_engraver"
\consists "Completion_heads_engraver"

P A
c2. c8dd ef gabc8c2bdagléfdedc8. c2
b
0 \
)\l r) N N 7
G) = frre O
¢ < > t 1 r—i
s} | \
)" 4 | k
fon—" o) N
AN VA Te)
J —_ 4° =

This engraver splits all running notes at the bar line, and inserts ties. One of its uses is to
debug complex scores: if the measures are not entirely filled, then the ties exactly show how
much each measure is off.

If you want to allow line breaking on the bar lines where Completion_heads_engraver splits
notes, you must also remove Forbid_line_breaks_engraver.
Bugs

Not all durations (especially those containing tuplets) can be represented exactly with normal
notes and dots, but the engraver will not insert tuplets.

Completion_heads_engraver only affects notes; it does not split rests.

See also
FExamples: ‘input/regression/completion-heads.ly’.

Program reference: Completion_heads_engraver.

Chapter 6: Basic notation 70

6.3 Polyphony

Polyphony in music refers to having more than one voice occurring in a piece of music. Polyphony
in LilyPond refers to having more than one voice on the same staff.

6.3.1 Chords

A chord is formed by a enclosing a set of pitches between < and >. A chord may be followed by
a duration, and a set of articulations, just like simple notes

<c e g>4 <c>8

0 .

JJ ic$

For more information about chords, see Section 7.2 [Chord names|, page 112.

6.3.2 Stems

Whenever a note is found, a Stem object is created automatically. For whole notes and rests,
they are also created but made invisible.

Predefined commands

\stemUp, \stemDown, \stemNeutral.

Commonly tweaked properties

To change the direction of stems in the middle of the staff, use

ad bcb
\override Stem #'neutral-direction = #up
ad bchb
\override Stem #'neutral-direction = #down
ad bchb
0 [|
)" 4 | | |
&y e T
| | | | | | |
ryj T 1 | T 1

6.3.3 Basic polyphony

The easiest way to enter fragments with more than one voice on a staff is to enter each voice as
a sequence (with {...}), and combine them simultaneously, separating the voices with \\

\new Staff \relative c' {

clé6 d e £
<<
{gsfel d2e2} \\
{r8e4dc8 | cbl6abd8g ™ g2} \\
{s2. | s4 b4 c2 }
>>
}
0 ; , .
&, | :
[y L 7 %?.

I Irt =

Chapter 6: Basic notation 71

The separator causes Voice contexts' to be instantiated. They bear the names "1", "2",
etc. In each of these contexts, vertical direction of slurs, stems, etc., is set appropriately.

These voices are all separate from the voice that contains the notes just outside the << \\
>> construct. This should be noted when making changes at the voice level. This also means
that slurs and ties cannot go into or out of a << \\ >> construct. Conversely, parallel voices
from separate << \\ >> constructs on the same staff are the the same voice. Here is the same
example, with different noteheads for each voice. Note that the change to the note-head style
in the main voice does not affect the inside of the << \\ >> constructs. Also, the change to the
second voice in the first << \\ >> construct is effective in the second << \\ >>, and the voice is
tied across the two constructs.

\new Staff \relative c' {
\override NoteHead #'style = #'cross
clé d e £
<<
{gdfel}\\
{ \override NoteHead #'style
r8 ed d c8 ~ }
>> |
<<
{d2 e2 } \\
{ c8Dbl6ab8 g~ g2} \\
{ \override NoteHead #'style
>>

#'triangle

#'slash s4 b4 c2 }

i

Polyphony does not change the relationship of notes within a \relative { } block. Each
note is calculated relative to the note immediately preceding it.

Q]

\relative { noteA << noteB \\ noteC >> noteD }

noteC is relative to noteB, not noteA; noteD is relative to noteC, not noteB or noteA.

6.3.4 Explicitly instantiating voices

Voice contexts can also be instantiated manually inside a << >> block to create polyphonic
music, using \voiceOne, up to \voiceFour to assign stem directions and a horizontal shift for
each part.

Specifically,
<< \upper \\ \lower >>
is equivalent to

<<
\new Voice
\new Voice
>>

"1" { \voiceOne \upper }
"2" { \voiceTwo \lower }

1 Polyphonic voices are sometimes called “layers” in other notation packages

Chapter 6: Basic notation 72

The \voiceXXX commands set the direction of stems, slurs, ties, articulations, text annota-
tions, augmentation dots of dotted notes, and fingerings. \voiceOne and \voiceThree make
these objects point upwards, while \voiceTwo and \voiceFour make them point downwards.
The command \oneVoice will revert back to the normal setting.

An expression that appears directly inside a << >> belongs to the main voice. This is useful
when extra voices appear while the main voice is playing. Here is a more correct rendition of the
example from the previous section. The crossed noteheads demonstrate that the main melody
is now in a single voice context.

\new Staff \relative c' {
\override NoteHead #'style = #'cross
clé d e £
\voiceOne
<<
{gtfel d2e2}
\new Voice="1" { \voiceTwo
r8 e4 d c8 " | c8 bl6 a b8 g ~ g2
\oneVoice
}
\new Voice { \voiceThree
s2. | s4 b4 c2
\oneVoice
}
>>
\oneVoice

¥

~—

S

The correct definition of the voices allows the melody to be slurred.

\new Staff \relative c' {
cl6"(de f
\voiceOne
<<

{gdfel d2e2)}

\context Voice="1" { \voiceTwo
r8 e4 d c8 ~ | c8 bl6 a b8 g ~ g2
\oneVoice

}

\new Voice { \voiceThree
s2. s4 b4 c2
\oneVoice

}

>>
\oneVoice

Chapter 6: Basic notation 73

0

&,

[Y) &

~|alll

uaiidy

Avoiding the \\ separator also allows nesting polyphony constructs, which in some case might
be a more natural way to typeset the music.

\new Staff \relative c' {
cl6"(de f
\voiceOne
<<
{gdfel d2e2)}
\context Voice="1" { \voiceTwo
r8 e4 d c8 ~ |
<<
{c8 b16 a b8 g ~ g2}
\new Voice { \voiceThree
s4 b4 c2
\oneVoice
}
>>
\oneVoice

}
>>

\oneVoice

3

0

&,

[Y) &

~|alll

uaiidy

In some instances of complex polyphonic music, you may need additional voices to avoid
collisions between notes. Additional voices are added by defining an identifier, as shown below:

voiceFive = #(context-spec-music (make-voice-props-set 4) 'Voice)

\relative c''' <<
{ \voiceOne g4 ~ \stemDown g32[f(es d c b a b64)g] } \\
{ \voiceThree b4} \\
{ \voiceFive d,} \\
{ \voiceTwo g,?}
>>

P
" 4 : | "4ﬁl__ —

6.3.5 Collision Resolution

Normally, note heads with a different number of dots are not merged, but when the object
property merge-differently-dotted is set in the NoteCollision object, they are merged:

Chapter 6: Basic notation 74

\new Voice << {
g8 g8
\override Staff.NoteCollision
#'merge-differently-dotted = ##t
g8 g8
}\\ { g8.[£f16] g8.[f16] } >>

Similarly, you can merge half note heads with eighth notes, by setting merge-differently-
headed:

\new Voice << {
c8 c4.
\override Staff.NoteCollision
#'merge-differently-headed = ##t
c8cd. P \\ { c2c23} >

merge-differently-headed and merge-differently-dotted only apply to opposing stem di-
rections (ie. Voice 1 & 2).

LilyPond also vertically shifts rests that are opposite of a stem, for example
\new Voice << c''4 \\ r4 >>

If three or more notes line up in the same column, merge-differently-headed cannot
successfully complete the merge of the two notes that should be merged. To allow the merge
to work properly, apply a \shift to the note that should not be merged. In the first measure
of following example, merge-differently-headed does not work (the half-note head is solid).
In the second measure, \shift0On is applied to move the top g out of the column, and merge-
differently-headed works properly.

\override Staff.NoteCollision #'merge-differently-headed = ##t
<<
{d="'2 g2 } \\
{ \oneVoice d=''8 c8 r4 e,8 c'8 rd4 } \\
{ \voiceFour e,,2 e'2}
>>
<<
{ d'='"'2 \shiftOn g2 } \\
{ \oneVoice d=''8 c8 r4 ¢,8 c'8 rd4 } \\
{ \voiceFour e, ,2 e'2}

Chapter 6: Basic notation 75

>>

.
ﬁ
.

i
N

||
_WIII‘

Predefined commands
\oneVoice, \voiceOne, \voiceTwo, \voiceThree, \voiceFour.

\shiftOn, \shiftOnn, \shiftOnnn, \shift0ff: these commands specify the degree to which
chords of the current voice should be shifted. The outer voices (normally: voice one and
two) have \shift0ff, while the inner voices (three and four) have \shiftOn. \shiftOnn and
\shiftOnnn define further shift levels.

When LilyPond cannot cope, the force-hshift property of the NoteColumn object and
pitched rests can be used to override typesetting decisions.

\relative <<
{
<d g>
<d g>
F\WN\A{
<b f£'>
\once \override NoteColumn #'force-hshift = #1.7
<b £'>
T >>

Q 1

See also

Program reference: the objects responsible for resolving collisions are NoteCollision and
RestCollision.

Examples: ‘input/regression/collision-dots.ly’, ‘input/regression/collision
-head-chords.ly’, ‘input/regression/collision-heads.ly’, ‘input/regression/
collision-mesh.ly’, and ‘input/regression/collisions.ly’.

Bugs
When using merge-differently-headed with an upstem eighth or a shorter note, and a down-

stem half note, the eighth note gets the wrong offset.

There is no support for clusters where the same note occurs with different accidentals in the
same chord. In this case, it is recommended to use enharmonic transcription, or to use special
cluster notation (see Section 8.4.4 [Clusters|, page 205).

Chapter 6: Basic notation

6.4 Staff notation

76

This section describes music notation that occurs on staff level, such as key signatures, clefs and

time signatures.

6.4.1 Clef

The clef indicates which lines of the staff correspond to which pitches. The clef is set with the

\clef command

{ c''2 \clef alto g'2 }

0 -
U |

Supported clefs include

Clef Position

treble, violin, G, G2 G clef on 2nd line
alto, C C clef on 3rd line
tenor C clef on 4th line.
bass, F F clef on 4th line
french G clef on 1st line, so-called French violin clef
soprano C clef on 1st line
mezzosoprano C clef on 2nd line
baritone C clef on 5th line
varbaritone F clef on 3rd line
subbass F clef on 5th line
percussion percussion clef
tab tablature clef

By adding _8 or "8 to the clef name, the clef is transposed one octave down or up, respectively,

and _15 and ~15 transposes by two octaves. The argument clefname must be enclosed in quotes
when it contains underscores or digits. For example,

\clef "G_8" c4

Commonly tweaked properties

The command \clef "treble_8" is equivalent to setting clefGlyph, clefPosition (which
controls the Y position of the clef), middleCPosition and clefOctavation. A clef is printed
when any of these properties are changed. The following example shows possibilities when
setting properties manually.

{
\set Staff.clefGlyph = #"clefs.F"
\set Staff.clefPosition = #2
c'4
\set Staff.clefGlyph = #"clefs.G"
c'd

Chapter 6: Basic notation 7

\set Staff.clefGlyph = #"clefs.C"

c'd
\set Staff.clefOctavation = #7
c'4
\set Staff.clefOctavation = #0

\set Staff.clefPosition = #0
c'4

\clef "bass"

c'd

\set Staff.middleCPosition = #4
c'4

d \ W] e) Z |

See also
Manual: Section 6.5.7 [Grace notes], page 91.

Program reference: Clef.

6.4.2 Key signature

The key signature indicates the tonality in which a piece is played. It is denoted by a set of
alterations (flats or sharps) at the start of the staff.

Setting or changing the key signature is done with the \key command
\key pitch type

Here, type should be \major or \minor to get pitch-major or pitch-minor, respectively. You
may also use the standard mode names (also called “church modes”): \ionian, \locrian,
\aeolian, \mixolydian, \lydian, \phrygian, and \dorian.

This command sets the context property Staff.keySignature. Non-standard key signatures
can be specified by setting this property directly.

Accidentals and key signatures often confuse new users, because unaltered notes get natural
signs depending on the key signature. For more information, see Section 6.1.2 [Accidentals],
page 60 or Section 2.2.2 [Accidentals and key signatures|, page 17.

\key g \major

f1
fis
4\ U e '
[[an) A U7
ANV
[y

Commonly tweaked properties

A natural sign is printed to cancel any previous accidentals. This can be suppressed by setting
the Staff.printKeyCancellation property.

Chapter 6: Basic notation 78

\key d \major

abcisd

\key g \minor

a bes cd

\set Staff.printKeyCancellation = ##f
\key d \major

abcisd

\key g \minor

a bes cd

0O 4 [R # | |
% | | = — | | | | | | ﬁ
U | | | | ' | | '
) ;
| |
() ' '
See also

Program reference: KeyCancellation, KeySignature.

6.4.3 Time signature

Time signature indicates the metrum of a piece: a regular pattern of strong and weak beats. It
is denoted by a fraction at the start of the staff.

The time signature is set with the \time command

\time 2/4 c'2 \time 3/4 c'2.

R

G

Commonly tweaked properties

The symbol that is printed can be customized with the style property. Setting it to #' () uses
fraction style for 4/4 and 2/2 time,

\time 4/4 c'1
\time 2/2 c'1
\override Staff.TimeSignature #'style = #'()
\time 4/4 c'1
\time 2/2 c'1

O N 4 [}
£\ r £) (0 -
[fan YA W] U J A €)
SV T x A
() © -© © o

Chapter 6: Basic notation 79

There are many more options for its layout. See Section 7.7.6 [Ancient time signatures],
page 152 for more examples.

\time sets the property timeSignatureFraction, beatLength and measureLength in the
Timing context, which is normally aliased to Score. The property measureLength determines
where bar lines should be inserted, and how automatic beams should be generated. Changing
the value of timeSignatureFraction also causes the symbol to be printed.

More options are available through the Scheme function set-time-signature. In combina-
tion with the Measure_grouping_engraver, it will create MeasureGrouping signs. Such signs
ease reading rhythmically complex modern music. In the following example, the 9/8 measure is
subdivided in 2, 2, 2 and 3. This is passed to set-time-signature as the third argument (2 2
23)

\score {
\relative c'' {
#(set-time-signature 9 8 '(2 2 2 3))
g8l gl dl d] gl gl a8[(bes gl) |
#(set-time-signature 5 8 '(3 2))

ad. g4
}
\layout {
\context {
\Staff
\consists "Measure_grouping_engraver"
+
}
}
IR AN AN T
o) , L
A —9—— T Jhe o —J—
koo f oo o
See also

Program reference: TimeSignature, and Timing_translator.

Examples: ‘input/test/compound-time.ly’.

Bugs

Automatic beaming does not use the measure grouping specified with set-time-signature.

6.4.4 Partial measures
Partial measures, such as an anacrusis or upbeat, are entered using the

\partial 16*5 c16 cis d dis e | a2. c,4 | b2

2
T

Chapter 6: Basic notation 80

The syntax for this command is

\partial duration
where duration is the rhythmic length to be added before the next bar.
This is internally translated into

\set Timing.measurePosition = -length of duration

The property measurePosition contains a rational number indicating how much of the
measure has passed at this point. Note that this is a negative number; \partial 4 is internally
translated to mean “there is a quarter note left in the bar”.

Bugs
This command does not take into account grace notes at the start of the music. When a piece
starts with graces notes in the pickup, then the \partial should follow the grace notes
\grace f16
\partial 4

gé
a2 g2

C.Ek:
N
Q|

r) N1

\partial is only intended to be used at the beginning of a piece. If you use it after the
beginning, some odd warnings may occur.

6.4.5 Bar lines

Bar lines delimit measures, but are also used to indicate repeats. Normally they are inserted
automatically. Line breaks may only happen on bar lines.

Special types of bar lines can be forced with the \bar command
c4 \bar "|:" c4

0

SRR (B

U | |

The following bar types are available

N (&

P>
an

3 R unbroken | |

P

i —
o

LY
LY
LYl
L YR
L YR

Chapter 6: Basic notation 81

broken | |:
5

=

In addition, you can specify "||:", which is equivalent to "|:" except at line breaks, where
it gives a double bar line at the end of the line and a start repeat at the beginning of the next
line.

To allow a line break where there is no visible bar line, use

\bar nn

This will insert an invisible bar line and allow line breaks at this point (without increasing the
bar number counter).

In scores with many staves, a \bar command in one staff is automatically applied to all staves.
The resulting bar lines are connected between different staves of a StaffGroup, PianoStaff, or
ChoirStaff.

<<
\new StaffGroup <<
\new Staff {
e'd d'
\bar "[|"
f' e!
}
\new Staff { \clef bass c4 ge g }
>>

\new Staff { \clef bass c2 c2 }
>>

N
q
N
N

Commonly tweaked properties

The command \bar bartype is a short cut for doing \set Timing.whichBar = bartype. When-
ever whichBar is set to a string, a bar line of that type is created.

A bar line is created whenever the whichBar property is set. At the start of a measure it is
set to the contents of Timing.defaultBarType. The contents of repeatCommands are used to
override default measure bars.

You are encouraged to use \repeat for repetitions. See Section 6.7 [Repeats|, page 103.

See also
In this manual: Section 6.7 [Repeats], page 103, Section 6.4.7 [System start delimiters], page 82.

Program reference: BarLine (created at Staff level), SpanBar (across staves).

Chapter 6: Basic notation 82

6.4.6 Unmetered music

Bar lines and bar numbers are calculated automatically. For unmetered music (cadenzas, for
example), this is not desirable. To turn off automatic bar lines and bar numbers, use the
commands \cadenzaOn and \cadenzaOff.

cdded
\cadenzaOn

c4 c d8 d d £f4 g4.
\cadenzaOff

\bar nIu

d4d e d c

Bugs

LilyPond will only insert line breaks and page breaks at a barline. Unless the unmetered music
ends before the end of the staff line, you will need to insert invisible bar lines

\bar nn

to indicate where breaks can occur.

6.4.7 System start delimiters
Many scores consist of more than one staff. These staves can be joined in four different ways

e The group is started with a brace at the left, and bar lines are connected. This is done with
the GrandStaff context.

\new GrandStaff
\relative <<
\new Staff { c1 c }
\new Staff { c ¢ }

>>
0

/\ r £)

[fan YA W]

SV

() -© o
0

/\ y £)

[fan YA W]

ANV

() -© o

e The group is started with a bracket, and bar lines are connected. This is done with the
StaffGroup context

\new StaffGroup
\relative <<
\new Staff { c1 c }
\new Staff { c ¢ }
>>

Chapter 6: Basic notation 83

Q

4\ f £)

U

ANV

[Y) o o
Q

4\ y £)

AU

ANV

[Y) o -©

e The group is started with a bracket, but bar lines are not connected. This is done with the
ChoirStaff context.

\new ChoirStaff
\relative <<
\new Staff { cl1 ¢ }
\new Staff { c ¢ }

>>
Q

4\ r £)

AU

ANV

[Y) o o
Q

4\ r £)

U

ANV

[Y) o o

e The group is started with a vertical line. Bar lines are not connected. This is the default
for the score.

\relative <<

\new Staff { cl1 ¢ }
\new Staff { c c }

>>
()
)" 4
£\ r £)
[[an Y W]
ANV
[Y) -© o
()
)" 4
/\ r £)
[fan Y W]
ANV
[Y) -© o
See also

The bar lines at the start of each system are SystemStartBar, SystemStartBrace, and
SystemStartBracket. Only one of these types is created in every context, and that type is
determined by the property systemStartDelimiter

Commonly tweaked properties
System start delimiters may be deeply nested,

\new StaffGroup
\relative <<
\set StaffGroup.systemStartDelimiterHierarchy
= #' (SystemStartSquare (SystemStartBracket a (SystemStartSquare b)) d)
\new Staff { c1l }
\new Staff { c1 }
\new Staff { c1 }
\new Staff { cl }

Chapter 6: Basic notation 84

\new Staff { c1 }

>>
Q

4\ £}

[fan Y W]

SP

() -©
0

g\ r £)
U

SY

[Y) o
0

4\ r £)
U

P

[Y) o
Q

4\ r £)

[[an Y W]

ANV

[Y) -©
0

4\ r £)

[fan Y W]

ANV

[Y) -©

6.4.8 Staff symbol

Notes, dynamic signs, etc., are grouped with a set of horizontal lines, called a staff (plural
‘staves’). In LilyPond, these lines are drawn using a separate layout object called staff symbol.

The staff symbol may be tuned in the number, thickness and distance of lines, using prop-
erties. This is demonstrated in the example files ‘input/test/staff-lines.ly’, ‘input/test/
staff-size.ly’.

In addition, staves may be started and stopped at will. This is done with \startStaff and
\stopStaff.

b4 b

\override Staff.StaffSymbol #'line-count = 2
\stopStaff \startStaff

b b

\revert Staff.StaffSymbol #'line-count
\stopStaff \startStaff

b b

0
G

In combination with Frenched staves, this may be used to typeset ossia sections. An example
is shown here

ossia

JCBER NN Fapt

A

G

Chapter 6: Basic notation 85

See also
Program reference: StaffSymbol.
Examples: ‘input/test/staff-lines.ly’, ‘input/test/ossia.ly’, ‘input/test/staff
-size.ly’, ‘input/regression/staff-line-positions.1ly’.
6.4.9 Writing music in parallel

Music for multiple parts can be interleaved

\parallelMusic #'(voiceA voiceB) {

r8 g'i6[c''] e''[g' c'' e''] r8 g'i6[c''] e''[g" c'" e"'] |
c'2 c'2 |
r8 a't6[d'"'] f''[a'd'' £'17r8 a'16[d''] £''[a' d'"' £''] |
c'2 c'2 |

}
\new StaffGroup <<
\new Staff \new Voice \voiceA
\new Staff \new Voice \voiceB
>>

o |

o o o
[Y) . :
()
)" 4
(€
ANV
() < =

3

¢
&
@

This works quite well for piano music
music = {
\key c \major

\time 4/4
\parallelMusic #'(voiceA voiceB voiceC voiceD) {
% Bar 1
r8 g'i6[c''] e''[g' ¢c'" e''] r8 g'16[c''] e''[g' c"'
e''] |
c'2 c'2 |
r8 al6[d'] £'[ad' f'] r8 alé[d'] £'[ad' £'] |
c2 c2 |
% Bar 2
a'8 b' c'' a"! e'' £ g''a'' |
d'4 d' d' a' |
cl6def defg efga fgab |
a,4 a,4 a,4 a,4 |

Chapter 6: Basic notation 86

% Bar 3 ...
}
}

\score {
\new PianoStaff <<
\music
\new Staff <<
\voiceA \\
\voiceB
>>
\new Staff {
\clef bass
<<
\voiceC \\
\voiceD
>>

>>

T TR T

Y P —F = T

ﬂé 1.!‘ ﬂé PE =

?ﬁéf

"N

—y e
NN
N
N
N

o
/

e \ U~
‘ |

6.5 Connecting notes

This section deals with notation that affects groups of notes.

6.5.1 Ties

A tie connects two adjacent note heads of the same pitch. The tie in effect extends the length
of a note. Ties should not be confused with slurs, which indicate articulation, or phrasing slurs,
which indicate musical phrasing. A tie is entered using the tilde symbol <~’

eI e| <CI e| gI> -~ <Cl eI gl>
Q PR
A =1
D= £ 3

When a tie is applied to a chord, all note heads whose pitches match are connected. When
no note heads match, no ties will be created. Chords may be partially tied by placing the tie
inside the chord,

<c”" e g” b> <c e g b>

Chapter 6: Basic notation 87

A tie is just a way of extending a note duration, similar to the augmentation dot. The
following example shows two ways of notating exactly the same concept

()

)Y 4 &

/\ e)))
[[an) | | |
ANV | | |
() = < @

Ties are used either when the note crosses a bar line, or when dots cannot be used to denote the
rhythm. When using ties, larger note values should be aligned to subdivisions of the measure,

such as

[not
)" 4 N N
/\ o o £ o rd
[[an Y W] / [y JA [y
~Y))
() 4 s @
N— N~~—

If you need to tie a lot of notes over bars, it may be easier to use automatic note splitting
(see Section 6.2.7 [Automatic note splitting], page 69). This mechanism automatically splits
long notes, and ties them across bar lines.

When a second alternative of a repeat starts with a tied note, you have to repeat the tie.
This can be achieved with \repeatTie,

Commonly tweaked properties

Ties are sometimes used to write out arpeggios. In this case, two tied notes need not be
consecutive. This can be achieved by setting the tieWaitForNote property to true. The same
feature is also useful, for example, to tie a tremolo to a chord. For example,

\set tieWaitForNote = ##t

\grace { c16[” e” g™ } <c, e g>2
\repeat "tremolo" 8 { c32” ¢'” } <c ¢,>1
e8” ¢c” a” f7 <e' c a £>2

0 =
'J
* r @) ﬁ O —VJ
[[an YA W] | g 7]
ANV P e Ve
() 4 4 & -© ~
S—— ~—

Ties may be engraved manually by changing the tie-configuration property. The first
number indicates the distance from the center of the staff in staff-spaces, and the second number

indicates the direction (1=up, -1=down).

Chapter 6: Basic notation 88

<c e g>2~ <c e g> |

\override TieColumn #'tie-configuration =
#'((0.0 . 1) (-2.0 . 1) (-4.0 . 1))

<c e g>7 <c e g> |

P

Predefined commands
\tieUp, \tieDown, \tieNeutral, \tieDotted, \tieDashed, \tieSolid.

See also
In this manual: Section 6.2.7 [Automatic note splitting], page 69.
Program reference: Tie.

Examples: ‘input/regression/tie-arpeggio.ly’ ‘input/regression/tie-manual.ly’

Bugs
Switching staves when a tie is active will not produce a slanted tie.

Changing clefs or octavations during a tie is not really well-defined. In these cases, a slur
may be preferable.

6.5.2 Slurs

A slur indicates that notes are to be played bound or legato. They are entered using parentheses

f(g a) a8 b(a4 g2 f4)
<c e>2(<b d>2)

op P P P v o

! | -

a—
N (o]

P

The direction of a slur can be specified with \slurDIR, where DIR is either Up, Down, or
Neutral (automatically selected).

However, there is a convenient shorthand for forcing slur directions. By adding _ or ~ before
the opening parentheses, the direction is also set. For example,

cd_(c) c™(o)

Only one slur can be printed at once. If you need to print a long slur over a few small slurs,
please see Section 6.5.3 [Phrasing slurs], page 89.

Chapter 6: Basic notation 89

Commonly tweaked properties
Some composers write two slurs when they want legato chords. This can be achieved in LilyPond
by setting doubleSlurs,

\set doubleSlurs = #i#t
<c e>4 (<d > <c e> <d >)

Predefined commands
\slurUp, \slurDown, \slurNeutral, \slurDashed, \slurDotted, \slurSolid.

See also

Program reference: internals document, Slur.

6.5.3 Phrasing slurs

A phrasing slur (or phrasing mark) connects notes and is used to indicate a musical sentence.
It is written using \ (and \) respectively

\time 6/4 c'\(d(e) £(e) d\)

() — &

/1
x| ! I

_\I
¢ ! '

Typographically, the phrasing slur behaves almost exactly like a normal slur. However, they
are treated as different objects. A \slurUp will have no effect on a phrasing slur; instead, use
\phrasingSlurUp, \phrasingSlurDown, and \phrasingSlurNeutral.

You cannot have simultaneous phrasing slurs.

Predefined commands

\phrasingSlurUp, \phrasingSlurDown, \phrasingSlurNeutral.

See also

Program reference: PhrasingSlur.

6.5.4 Laissez vibrer ties

L.v. ties (laissez vibrer) indicate that notes must not be damped at the end. It is used in
notation for piano, harp and other string and percussion instruments. They can be entered
using \laissezVibrer,

<c f g>\laissezVibrer

Chapter 6: Basic notation 90

See also
Program reference: LaissezVibrerTie LaissezVibrerTieColumn

Example files: ‘input/regression/laissez-vibrer-tie.ly’

6.5.5 Automatic beams

LilyPond inserts beams automatically
\time 2/4 c8 ¢ ¢ ¢ \time 6/8 ¢ ¢ ¢ c8. cl16 c8

.

ik g‘
Ny X | | | | [2 | | | |
e |

When these automatic decisions are not good enough, beaming can be entered explicitly. It is
also possible to define beaming patterns that differ from the defaults. See Section 9.1.2 [Setting
automatic beam behavior], page 215 for details.

Individual notes may be marked with \noBeam to prevent them from being beamed

\time 2/4 c8 c\noBeam c c

n €
41
U r

See also

Program reference: Beam.

6.5.6 Manual beams

In some cases it may be necessary to override the automatic beaming algorithm. For example,
the autobeamer will not put beams over rests or bar lines. Such beams are specified manually
by marking the begin and end point with [and]

{
r4 r8[g' a r8] r8 g[| al r8

Commonly tweaked properties

Normally, beaming patterns within a beam are determined automatically. If necessary, the
properties stemLeftBeamCount and stemRightBeamCount can be used to override the defaults.
If either property is set, its value will be used only once, and then it is erased

{
£8[ri6
f g al
f8[ri16
\set stemLeftBeamCount = #1

Chapter 6: Basic notation 91

r) & | (] I

R =

The property subdivideBeams can be set in order to subdivide all 16th or shorter beams at
beat positions, as defined by the beatLength property.

cl6[c cccc c c]

\set subdivideBeams = ##t

cl6[c ccccccl

\set Score.beatLength = #(ly:make-moment 1 8)
cl6[c c c c c c c]

0

J

(D
eJ

For more information about make-moment, see Section 8.4.2 [Time administration|, page 203.

Line breaks are normally forbidden when beams cross bar lines. This behavior can be changed
by setting allowBeamBreak.

Bugs
Kneed beams are inserted automatically when a large gap is detected between the note heads.

This behavior can be tuned through the object.

Automatically kneed cross-staff beams cannot be used together with hidden staves. See
Section 8.3.2 [Hiding staves], page 197.

Beams do not avoid collisions with symbols around the notes, such as texts and accidentals.

6.5.7 Grace notes

Grace notes are ornaments that are written out. The most common ones are acciaccatura, which
should be played as very short. It is denoted by a slurred small note with a slashed stem. The
appoggiatura is a grace note that takes a fixed fraction of the main note, and is denoted as a
slurred note in small print without a slash. They are entered with the commands \acciaccatura
and \appoggiatura, as demonstrated in the following example

b4 \acciaccatura d8 c4 \appoggiatura e8 d4
\acciaccatura { gi6[f] } e4

Both are special forms of the \grace command. By prefixing this keyword to a music
expression, a new one is formed, which will be printed in a smaller font and takes up no logical
time in a measure.

Chapter 6: Basic notation 92

c4 \grace c16 c4
\grace { c16[d16] } c2 c4

0 A

Unlike \acciaccatura and \appoggiatura, the \grace command does not start a slur.

Internally, timing for grace notes is done using a second, ‘grace’ timing. Every point in time
consists of two rational numbers: one denotes the logical time, one denotes the grace timing.
The above example is shown here with timing tuples

0 \ —
e r— ’ ‘ & —

\J I I

ANIV
e) | |

(0,0) (3, 73)(3,0)(2,38)(2,23)(2,0)

|
BN
BN

@)}

The placement of grace notes is synchronized between different staves. In the following
example, there are two sixteenth grace notes for every eighth grace note
<< \new Staff { e4 \grace { c16[d e f] } e4 }
\new Staff { c4 \grace { g8[bl } c4 } >>

If you want to end a note with a grace, use the \afterGrace command. It takes two
arguments: the main note, and the grace notes following the main note.

cl \afterGrace d1 { c16[d] } c4

0 A
[[av Y t
Sk |

This will put the grace notes after a “space” lasting 3/4 of the length of the main note. The
fraction 3/4 can be changed by setting afterGraceFraction, ie.

afterGraceFraction = #(cons 7 8)
will put the grace note at 7/8 of the main note.
The same effect can be achieved manually by doing

\new Voice {
<< { d1~\trill_(}
{ s2 \grace { c16[d]l } } >>
c4)

Chapter 6: Basic notation 93

}
0} 4r A
foRm——c
ry, 1

By adjusting the duration of the skip note (here it is a half-note), the space between the main-
note and the grace is adjusted.

A \grace section will introduce special typesetting settings, for example, to produce smaller
type, and set directions. Hence, when introducing layout tweaks, they should be inside the grace
section, for example,

\new Voice {
\acciaccatura {
\stemDown
f16->
\stemNeutral
}
gl
}

y
iy

The overrides should also be reverted inside the grace section.

The layout of grace sections can be changed throughout the music using the function add-
grace-property. The following example undefines the Stem direction for this grace, so that
stems do not always point up.

\new Staff {
#(add-grace-property 'Voice 'Stem 'direction '())

¥

Another option is to change the variables startGraceMusic, stopGraceMusic,
startAcciaccaturaMusic, stopAcciaccaturaMusic, startAppoggiaturaMusic,

stopAppoggiaturaMusic. More information is in the file ‘ly/grace-init.1ly’.

The slash through the stem in acciaccaturas can be obtained in other situations by \override
Stem #'stroke-style = #"grace".

Commonly tweaked properties

Grace notes may be forced to use floating spacing,

()

)" 4

(€ e
ANV | |
[Y) & 4 Jdddd
()

)" 4

(€ —

ANV | | | | | | | |
eJ 40 0ededdedé

Chapter 6: Basic notation 94

See also

Program reference: GraceMusic.

Bugs
A score that starts with a \grace section needs an explicit \new Voice declaration, otherwise
the main note and the grace note end up on different staves.

Grace note synchronization can also lead to surprises. Staff notation, such as key signatures,
bar lines, etc., are also synchronized. Take care when you mix staves with grace notes and staves
without, for example,

<< \new Staff { e4 \bar "|:" \grace c16 d4 }
\new Staff { c4 \bar "|:" d4 } >>

A ;&lo_f_
(e ¥ 9] | | | |
N3V i
o |
()

e
R =
() ' '

This can be remedied by inserting grace skips of the corresponding durations in the other staves.
For the above example

\new Staff { c4 \bar "|:" \grace s16 d4 }

Grace sections should only be used within sequential music expressions. Nesting or juxta-
posing grace sections is not supported, and might produce crashes or other errors.

6.6 Expressive marks

Expressive marks help musicians to bring more to the music than simple notes and rhythms.

6.6.1 Articulations

A variety of symbols can appear above and below notes to indicate different characteristics of
the performance. They are added to a note by adding a dash and the character signifying the
articulation. They are demonstrated here

ANV I

e) |

%(D
oM

1 > A
. R
IC I IC

(@)
1
\%

The meanings of these shorthands can be changed. See ‘ly/script-init.ly’ for examples.

The script is automatically placed, but the direction can be forced as well. Like other pieces
of LilyPond code, _ will place them below the staff, and ~ will place them above.

c''4a~- C"4_A

Chapter 6: Basic notation 95

Other symbols can be added using the syntax note\name. Again, they can be forced up or
down using ~ and _, e.g.,

c\fermata c~\fermata c_\fermata

Here is a chart showing all scripts available,

[0) . '
€ —
ANV | |
e ! |
accent marcato staccatissimo espressivo
0) _ s V ™
e ' —
ANV | | | |
QJ | | | |
staccato tenuto portato

upbow downbow

) o 9 U N Vv
&1 £ —
QJI I I
flageolet thumb 1lheel rheel 1ltoe
fH A 0 + oo o
o F F F —
UI I I I I
rtoe open stopped turn reverseturn

n_ dr ~w AV v My
SP—] 'P
e |
trill prall mordent prallprall prallmordent
) W MY A
& : . =
U I I I

upprall downprall upmordent downmordent

Chapter 6: Basic notation 96

&— = =
e) I I I

pralldown prallup lineprall signumcongruentiae

n A ~ M= =
o= £ F —
U | | | |

shortfermata fermata longfermata verylongfermata

;

ANV |

U |
segno coda varcoda

n % & it
r

Commonly tweaked properties

The vertical ordering of scripts is controlled with the script-priority property. The lower
this number, the closer it will be put to the note. In this example, the TextScript (the sharp
symbol) first has the lowest priority, so it is put lowest in the first example. In the second, the
prall trill (the Script) has the lowest, so it is on the inside. When two objects have the same
priority, the order in which they are entered decides which one comes first.

\once \override TextScript #'script-priority = #-100

a4~ \prall~\markup { \sharp }

\once \override Script #'script-priority = #-100
a4~ \prall~\markup { \sharp }

W #
~
[- o
)" 4
/\ y £)
U
ANV
[Y)
See also

Program reference: Script.

Bugs
These signs appear in the printed output but have no effect on the MIDI rendering of the music.

6.6.2 Fingering instructions

Fingering instructions can be entered using
note-digit
For finger changes, use markup texts
c4-1 c-2 c-3 c-4
c"\markup { \finger "2 - 3" }

[1 2 3 4 2-3
ﬁv (3

Vi
ANV I

J seee <

Chapter 6: Basic notation 97

You can use the thumb-script to indicate that a note should be played with the thumb (e.g.,
in cello music)

<a_\thumb a'-3>8 <b_\thumb b'-3>

ow
ow

Fingerings for chords can also be added to individual notes of the chord by adding them after
the pitches

< c-1 e-2 g-3 b-5 >4

W o

=N

Commonly tweaked properties
You may exercise greater control over fingering chords by setting fingeringOrientations

\set fingeringOrientations = #'(left down)
<c-1 es-2 g-4 bes-5 > 4

\set fingeringOrientations = #'(up right down)
<c-1 es-2 g-4 bes-5 > 4

() L9
1 1

Using this feature, it is also possible to put fingering instructions very close to note heads in
monophonic music,

\set fingeringOrientations = #'(right)
<es'-2>4

See also
Program reference: Fingering.

Examples: ‘input/regression/finger-chords.ly’.

Chapter 6: Basic notation 98

6.6.3 Dynamics

Absolute dynamic marks are specified using a command after a note c4\ff. The available
dynamic marks are \ppppp, \pppp, \pprp, \pp, \p, \mp, \mf, \f, \ff, \fff, \f£ff, \fp, \sf,
\sff, \sp, \spp, \sfz, and \rfz.

c\ppp c\pp ¢ \p c\mp c\mf c\f c\ff c\fff
c2\fp c\sf c\sff c\sp c\spp c\sfz c\rfz

0

ANV

7 7 7 7 7 7 7

/

PPIPP P ™D mf f (S fo f of P PPsfe ife

A crescendo mark is started with \< and terminated with \! or an absolute dynamic. A
decrescendo is started with \> and is also terminated with \! or an absolute dynamic. \cr and
\decr may be used instead of \< and \>. Because these marks are bound to notes, you must
use spacer notes if multiple marks are needed during one note

c\< c\! d\> e\!
<< f1 { s4 s4\< s4\! \> s4\! } >>

0 o

/
ANV I

A hairpin normally starts at the left edge of the beginning note and ends on the right edge of
the ending note. If the ending note falls on the downbeat, the hairpin ends on the immediately
preceding barline. This may be modified by setting the hairpinToBarline property,

\set hairpinToBarline = ##f
c4\< c2. c4\!

0
ANV . I I - II
DA —

In some situations the \espressivo articulation mark may be suitable to indicate a crescendo
and decrescendo on the one note,

c2 b4 a gl\espressivo

0 |

"4

ANV I I e
<<

e) | |

This may give rise to very short hairpins. Use minimum-length in Voice.Hairpin to lengthen
them, for example

\override Voice.Hairpin #'minimum-length = #5
Hairpins may be printed with a circled tip (al niente notation) by setting the circled-tip
property,

Chapter 6: Basic notation 99

\override Hairpin #'circled-tip = ##t
c2\< c\!
c4\> c\< c2\!

0
A1V . I I I I I

é) I I N —
o—— ——o<—_

You can also use text saying cresc. instead of hairpins

\setTextCresc
c\< d e f\!
\setHairpinCresc
e\> d c b\!
\setTextDecresc
c\> d e f\!
\setTextDim

e\> d c b\!

0
boeer |7 reelerf|?ree

| | |
cresc. - - —— decr.- - dim.- -

You can also supply your own texts

\set crescendoText = \markup { \italic "cresc. poco" }
\set crescendoSpanner = #'dashed-line
a'2\< a a a\!\mf

n | |

)" 4 | |

£\ r £) | |

N _ U 7 (7] 7 [
ANV

J cresc. poco mf

To create new dynamic marks or text that should be aligned with dynamics, see Section 8.1.8
[New dynamic marks|, page 184.

Commonly tweaked properties

Dynamics that occur at, begin on, or end on, the same note will be vertically aligned. If you
want to ensure that dynamics are aligned when they do not occur on the same note, you can
increase the staff-padding property.

\override DynamicLineSpanner #'staff-padding = #4
You may also use this property if the dynamics are colliding with other notation.
Crescendi and decrescendi that end on the first note of a new line are not printed. To change
this behavior, use
\override Score.Hairpin #'after-line-breaking = ##t

Text style dynamic changes (such as cresc. and dim.) are printed with a dashed line showing
their extent. To surpress printing this line, use

\override DynamicTextSpanner #'dash-period = #-1.0

Chapter 6: Basic notation 100

Predefined commands

\dynamicUp, \dynamicDown, \dynamicNeutral.

See also

Program reference: DynamicText, Hairpin. Vertical positioning of these symbols is handled by
DynamicLineSpanner.

6.6.4 Breath marks

Breath marks are entered using \breathe

c'4 \breathe d4

0)
e & i

o !

Commonly tweaked properties

The glyph of the breath mark can be tuned by overriding the text property of the
BreathingSign layout object with any markup text. For example,
c'd
\override BreathingSign #'text
= #(make-musicglyph-markup "scripts.rvarcomma")
\breathe
d4

0 ,
e & e

g

See also
Program reference: BreathingSign.

Examples: ‘input/regression/breathing-sign.ly’.

6.6.5 Trills

Short trills are printed like normal articulation; see Section 6.6.1 [Articulations|, page 94.
Long running trills are made with \startTrillSpan and \stopTrillSpan,

\new Voice {
<< { c1 \startTrillSpan }
{ s2. \grace { d16[\stopTrillSpan e] } } >>
c4 }

o) A
\ii#oiI
[Y)

Chapter 6: Basic notation 101

Trills that should be executed on an explicitly specified pitch can be typeset with the com-
mand pitchedTrill,

\pitchedTrill c4\startTrillSpan fis
f\stopTrillSpan

DO

s
/)]

The first argument is the main note. The pitch of the second is printed as a stemless note
head in parentheses.

Predefined commands
\startTrillSpan, \stopTrillSpan.

See also

Program reference: TrillSpanner.

6.6.6 Glissando

A glissando is a smooth change in pitch. It is denoted by a line or a wavy line between two
notes. It is requested by attaching \glissando to a note

c2\glissando c'
\override Glissando #'style = #'zigzag
c2\glissando c,

r £

>

See also
Program reference: Glissando.

Example files: ‘input/regression/glissando.ly’.

Bugs

Printing text over the line (such as gliss.) is not supported.

6.6.7 Arpeggio

You can specify an arpeggio sign (also known as broken chord) on a chord by attaching an
\arpeggio to a chord

<c e g c>\arpeggio

Chapter 6: Basic notation 102

A square bracket on the left indicates that the player should not arpeggiate the chord

\arpeggioBracket
<c' e g c>\arpeggio

The direction of the arpeggio is sometimes denoted by adding an arrowhead to the wiggly
line
\new Voice {
\arpeggioUp
<c e g c>\arpeggio
\arpeggioDown
<c e g c>\arpeggio

Commonly tweaked properties

When an arpeggio crosses staves, you may attach an arpeggio to the chords in both staves and
set PianoStaff.connectArpeggios

\new PianoStaff <<
\set PianoStaff.connectArpeggios = ##t
\new Staff { <c' e g c>\arpeggio }
\new Staff { \clef bass <c,, e g>\arpeggio }

>>
’
>E

AA

-
N (o]

P

AAAAAAA
VAAAAAA

6)
—Je (o

Ve

Predefined commands

\arpeggio, \arpeggioUp, \arpeggioDown, \arpeggioNeutral, \arpeggioBracket.

See also
Notation manual: Section 6.5.1 [Ties], page 86, for writing out arpeggios.

Program reference: Arpeggio.

Chapter 6: Basic notation 103

Bugs

It is not possible to mix connected arpeggios and unconnected arpeggios in one PianoStaff at
the same point in time.

6.6.8 Falls and doits

Falls and doits can be added to notes using the \bendAfter command,

0
e i

Q\J | |

6.7 Repeats

Repetition is a central concept in music, and multiple notations exist for repetitions.

6.7.1 Repeat types
The following types of repetition are supported

unfold Repeated music is fully written (played) out. This is useful when entering repetitious
music. This is the only kind of repeat that is included in MIDI output.

volta Repeats are not written out, but alternative endings (volte) are printed, left to right
with brackets. This is the standard notation for repeats with alternatives. These
are not played in MIDI output by default.

tremolo Make tremolo beams. These are not played in MIDI output by default.

percent Make beat or measure repeats. These look like percent signs. These are not played in
MIDI output by default. Percent repeats must be declared within a Voice context.

6.7.2 Repeat syntax
LilyPond has one syntactic construct for specifying different types of repeats. The syntax is
\repeat variant repeatcount repeatbody
If you have alternative endings, you may add

\alternative {
alternativel
alternativeZ2
alternative3

}
where each alternative is a music expression. If you do not give enough alternatives for all of
the repeats, the first alternative is assumed to be played more than once.
Standard repeats are used like this
cl

\repeat volta 2 { c4 de f }
\repeat volta 2 { f ed c }

0
ﬁi_($_l'

[[av Y | 1D I
o ;

Chapter 6: Basic notation 104

With alternative endings
cl
\repeat volta 2 {c4 d e f}
\alternative { {d2 d} {f f,} }

I

In the following example, the first ending is not a complete bar (it only had 3 beats). The
beginning of the second ending contains the 4th beat from the first ending. This “extra” beat
in the second ending is due to the first time ending, and has nothing to do with the \partial
at the beginning of the example.

\new Staff {
\partial 4
\repeat volta 4 { e | c2d2 | e2 £f2 | }
\alternative { { gd ggt{alaaaal b2. }}

}
[1-3. | &
> oo £
—52——77——. 2 ——— e £ ! |
[fan Y W | Ol |

Ties may be added to a second ending,
cl
\repeat volta 2 {c4 de f ~ }
\alternative { {f2 d} {f\repeatTie f,} }

M. .

[—— -

= i i | e

[fan YA W] | 1D | | | ol |

SV | | | ' |
[Y)

It is possible to shorten volta brackets by setting voltaSpannerDuration. In the next ex-
ample, the bracket only lasts one measure, which is a duration of 3/4.
\relative c''{
\time 3/4
ccc
\set Staff.voltaSpannerDuration = #(ly:make-moment 3 4)
\repeat "volta" 5 { ddd }
\alternative { { e e e f £ f }

{gegeglt}
}
1-4. 5.
0 o
. s o o | |
D | | I B |
oJ ! ! !

Chapter 6: Basic notation 105

See also

Examples:

Brackets for the repeat are normally only printed over the topmost staff. This can be adjusted
by setting the voltaOnThisStaff property; see ‘input/regression/volta-multi-staff.ly’.

Bugs
A nested repeat like

\repeat ...
\repeat ...
\alternative

is ambiguous, since it is is not clear to which \repeat the \alternative belongs. This ambiguity
is resolved by always having the \alternative belong to the inner \repeat. For clarity, it is
advisable to use braces in such situations.

Timing information is not remembered at the start of an alternative, so after a repeat timing
information must be reset by hand; for example, by setting Score.measurePosition or entering
\partial. Similarly, slurs or ties are also not repeated.

Volta brackets are not vertically aligned.

6.7.3 Repeats and MIDI

With a little bit of tweaking, all types of repeats can be present in the MIDI output. This is
achieved by applying the \unfoldRepeats music function. This function changes all repeats to
unfold repeats.

\unfoldRepeats {
\repeat tremolo 8 {c'32 e' }
\repeat percent 2 { c¢''8 d'' }
\repeat volta 2 {c'4 4' e' '}
\alternative {
{ gl al a| gl }
{f' e' d' c'}
}
}
\bar |||.u

DO

3

j
o
o
o
o
o
]
A

[\
DO

{

o +° - o

)
<

When creating a score file using \unfoldRepeats for MIDI, it is necessary to make two
\score blocks: one for MIDI (with unfolded repeats) and one for notation (with volta, tremolo,
and percent repeats). For example,

\score {
..music..
\layout { .. }

}

Chapter 6: Basic notation 106

\score {
\unfoldRepeats ..music..
\midi { .. }

}

6.7.4 Manual repeat commands

The property repeatCommands can be used to control the layout of repeats. Its value is a Scheme
list of repeat commands.

start-repeat
Print a | : bar line.

end-repeat
Print a :| bar line.

(volta text)
Print a volta bracket saying text: The text can be specified as a text string or as
a markup text, see Section 8.1.4 [Text markup], page 170. Do not forget to change
the font, as the default number font does not contain alphabetic characters;

(volta #f)
Stop a running volta bracket.
c4
\set Score.repeatCommands = #'((volta "93") end-repeat)
c4 c4
\set Score.repeatCommands = #'((volta #f))
c4 c4
93
: H @
ANV | | | |
Y, | |
See also
Program reference: VoltaBracket, RepeatedMusic, VoltaRepeatedMusic,

UnfoldedRepeatedMusic, and FoldedRepeatedMusic

6.7.5 Tremolo repeats
To place tremolo marks between notes, use \repeat with tremolo style

\new Voice \relative c' {
\repeat "tremolo" 8 { c16 di16 }
\repeat "tremolo" 4 { c16 di6 }
\repeat "tremolo" 2 { c16 d16 }
}

-~
Kol
1

G e

Chapter 6: Basic notation 107

Tremolo marks can also be put on a single note. In this case, the note should not be
surrounded by braces.

\repeat "tremolo" 4 c'16

A

 J

Similar output is obtained using the tremolo subdivision, described in Section 6.7.6 [Tremolo
subdivisions|, page 107.

See also
In this manual: Section 6.7.6 [Tremolo subdivisions|, page 107, Section 6.7 [Repeats]|, page 103.

Program reference: Beam, StemTremolo.

Example files: ‘input/regression/chord-tremolo.ly’, ‘input/regression/stem
-tremolo.ly’.

6.7.6 Tremolo subdivisions

Tremolo marks can be printed on a single note by adding ‘: [number]’ after the note. The number
indicates the duration of the subdivision, and it must be at least 8. A length value of 8 gives
one line across the note stem. If the length is omitted, the last value (stored in tremoloFlags)
is used

c'2:8 ¢c':32 | ¢': ¢': |

N (e

G
an

Bugs

Tremolos entered in this way do not carry over into the MIDI output.

See also
In this manual: Section 6.7.5 [Tremolo repeats], page 106.

Elsewhere: StemTremolo.

6.7.7 Measure repeats

In the percent style, a note pattern can be repeated. It is printed once, and then the pattern
is replaced with a special sign. Patterns of one and two measures are replaced by percent-like
signs, patterns that divide the measure length are replaced by slashes. Percent repeats must be
declared within a Voice context.

\new Voice \relative c' {
\repeat "percent" 4 { c4 }
\repeat "percent" 2 { c2 es2 f4 fis4 g4 c4 }

T
\|

Chapter 6: Basic notation 108

Measure repeats of more than 2 measures get a counter, if you switch on the
countPercentRepeats property,
\new Voice {
\set countPercentRepeats = #i#t
\repeat "percent" 4 { cl1 }

}
0} 2 3
)4
£\ o O oy LY 4 o g
[[an Y W] y L y L y L
ANV
¢

Isolated percents can also be printed. This is done by putting a multi-measure rest with a
different print function,
\override MultiMeasureRest #'stencil

= #ly:multi-measure-rest::percent
R1

See also

Program reference: RepeatSlash, PercentRepeat, DoublePercentRepeat,
DoublePercentRepeatCounter, PercentRepeatCounter, PercentRepeatedMusic

Chapter 7: Instrument-specific notation 109

7 Instrument-specific notation

This chapter explains how to use notation for specific instruments.

7.1 Piano music

Piano staves are two normal staves coupled with a brace. The staves are largely independent, but
sometimes voices can cross between the two staves. The same notation is also used for harps and
other key instruments. The PianoStaff is especially built to handle this cross-staffing behavior.
In this section we discuss the PianoStaff and some other pianistic peculiarities.

Bugs
Dynamics are not centered, but workarounds do exist. See the “piano centered dynamics”

template in Section D.2 [Piano templates|, page 320.

The distance between the two staves is the same for all systems in the score. It is possible
to override this per system, but it does require an arcane command incantation. See ‘input/
test/piano-staff-distance.ly’.

7.1.1 Automatic staff changes

Voices can be made to switch automatically between the top and the bottom staff. The syntax
for this is

\autochange ...music...

This will create two staves inside the current PianoStaff, called up and down. The lower staff
will be in bass clef by default.

A \relative section that is outside of \autochange has no effect on the pitches of music,
so, if necessary, put \relative inside \autochange like

\autochange \relative ...

The autochanger switches on basis of the pitch (middle C is the turning point), and it looks
ahead skipping over rests to switch in advance. Here is a practical example

\new PianoStaff
\autochange \relative c'

{
gdabcdrdag
}
()
(HA—¢
U
AN2V4
oJ
il OO) | y 2
\ \ U7 | 7\!
See also

In this manual: Section 7.1.2 [Manual staff switches|, page 110.

Program reference: AutoChangeMusic.

Chapter 7: Instrument-specific notation 110

Bugs
The staff switches may not end up in optimal places. For high quality output, staff switches
should be specified manually.

\autochange cannot be inside \times.

7.1.2 Manual staff switches

Voices can be switched between staves manually, using the command

\change Staff = staffname music
The string staffname is the name of the staff. It switches the current voice from its current staff
to the Staff called staffname. Typically staffname is "up" or "down". The Staff referred to
must already exist, so usually the setup for a score will start with a setup of the staves,

<<

\new Staff = "up" {
\skip 1 * 10 % keep staff alive

}
\new Staff = "down" {
\skip 1 * 10 % idem

}
>>

and the Voice is inserted afterwards

\context Staff = down
\new Voice { ... \change Staff =up ... }

7.1.3 Pedals
Pianos have pedals that alter the way sound is produced. Generally, a piano has three pedals,
sustain, una corda, and sostenuto.

Piano pedal instruction can be expressed by attaching \sustainDown, \sustainUp,
\unaCorda, \treCorde, \sostenutoDown and \sostenutoUp to a note or chord

c'4\sustainDown c'4\sustainUp

N @]

P

o @

Nep, #

What is printed can be modified by setting pedalXStrings, where X is one of the pedal
types: Sustain, Sostenuto or UnaCorda. Refer to SustainPedal in the program reference for
more information.

Pedals can also be indicated by a sequence of brackets, by setting the pedalSustainStyle
property to bracket objects

\set Staff.pedalSustainStyle = #'bracket
c\sustainDown d e
b\sustainUp\sustainDown

b g \sustainUp a \sustainDown \bar "|[."

. |
- r——f‘_a_
AN

I
,

Chapter 7: Instrument-specific notation 111

A third style of pedal notation is a mixture of text and brackets, obtained by setting the
pedalSustainStyle property to mixed
\set Staff.pedalSustainStyle = #'mixed
c\sustainDown d e

b\sustainUp\sustainDown
b g \sustainUp a \sustainDown \bar "|."

@o— |
&t i

Y e S

The default “*Ped.” style for sustain and damper pedals corresponds to style #'text. The
sostenuto pedal uses mixed style by default.

c\sostenutoDown d e c, f g a\sostenutoUp

0

VA

S
Sost. Ped. |

For fine-tuning the appearance of a pedal bracket, the properties edge-width, edge-height,
and shorten-pair of PianoPedalBracket objects (see PianoPedalBracket in the Program
reference) can be modified. For example, the bracket may be extended to the right edge of the
note head

\override Staff.PianoPedalBracket #'shorten-pair = #'(0 . -1.0)
c\sostenutoDown d e c, f g a\sostenutoUp

)
'_
S
Sost. Ped. |
See also

In this manual: Section 6.5.4 [Laissez vibrer ties|, page 89

7.1.4 Staff switch lines

Whenever a voice switches to another staff, a line connecting the notes can be printed automat-
ically. This is switched on by setting followVoice to true

\new PianoStaff <<
\new Staff="one" {
\set followVoice = ##t
cl
\change Staff=two
b2 a

}
\new Staff="two" { \clef bass \skip 1*2 }

>>

Chapter 7: Instrument-specific notation 112

()
()" 4
4\ I £
AU
ANV
[Y) o
6) & =
i &)
\
See also

Program reference: VoiceFollower.

Predefined commands
\showStaffSwitch, \hideStaffSwitch.

7.1.5 Cross staff stems

Chords that cross staves may be produced by increasing the length of the stem in the lower
staff, so it reaches the stem in the upper staff, or vice versa.

stemExtend = \once \override Stem #'length = #22
noFlag = \once \override Stem #'flag-style = #'no-flag
\new PianoStaff <<
\new Staff {
\stemDown \stemExtend
f'4
\stemExtend \noFlag
£'8
}
\new Staff {
\clef bass
a4 a8
}

>>

\ VA

7.2 Chord names

7.2.1 Introducing chord names

LilyPond has support for printing chord names. Chords may be entered in musical chord nota-
tion, i.e., < .. > but they can also be entered by name. Internally, the chords are represented
as a set of pitches, so they can be transposed

twoWays = \transpose c c' {
\chordmode {
cl f:susd bes/f
}

Chapter 7: Instrument-specific notation 113

<c e g>
<f bes c'>
<f bes 4d'>

<< \new ChordNames \twoWays
\new Voice \twoWays >>

C I:sus4 Bl)/F C I:sus4 I:6/sus4
b b

N

&/

-~

!
P
A
ofov)

Par @]
©F
O

P

S
©-

This example also shows that the chord printing routines do not try to be intelligent. The
last chord (f bes d) is not interpreted as an inversion.

Note that the duration of chords must be specified outside the <>.
<c e g>2

7.2.2 Chords mode

In chord mode sets of pitches (chords) are entered with normal note names. A chord is entered
by the root, which is entered like a normal pitch

\chordmode { es4. d8 c2 }

The mode is introduced by the keyword \chordmode.

Other chords may be entered by suffixing a colon and introducing a modifier (which may
include a number if desired)

\chordmode { el:m el:7 el:m7 }

oo
AR

G

The first number following the root is taken to be the ‘type’ of the chord, thirds are added
to the root until it reaches the specified number

\chordmode { c:3 ¢c:5 c:6 c:7 ¢c:8 ¢:9 ¢c:10 c:11 }

Chapter 7: Instrument-specific notation 114

More complex chords may also be constructed adding separate steps to a chord. Additions
are added after the number following the colon and are separated by dots

\chordmode { ¢:5.6 ¢:3.7.8 ¢c:3.6.13 }

Chord steps can be altered by suffixing a - or + sign to the number
\chordmode { c:7+ c:5+.3- c:3-.5-.7- }

Removals are specified similarly and are introduced by a caret. They must come after the
additions

\chordmode { ¢~°3 ¢c:7°5 ¢c:9°3.5 }

"4 T

e < e

Modifiers can be used to change pitches. The following modifiers are supported

m The minor chord. This modifier lowers the 3rd and (if present) the 7th step.

dim The diminished chord. This modifier lowers the 3rd, 5th and (if present) the 7th
step.

aug The augmented chord. This modifier raises the 5th step.

maj The major 7th chord. This modifier raises the 7th step if present.

sus The suspended 4th or 2nd. This modifier removes the 3rd step. Append either 2 or

4 to add the 2nd or 4th step to the chord.

Modifiers can be mixed with additions

\chordmode { c:sus4 c:7sus4 c:dim7 c:m6 }

Since an unaltered 11 does not sound good when combined with an unaltered 13, the 11 is
removed in this case (unless it is added explicitly)

\chordmode { c:13 c:13.11 ¢c:m13 }

Chapter 7: Instrument-specific notation 115

An inversion (putting one pitch of the chord on the bottom), as well as bass notes, can be
specified by appending /pitch to the chord

\chordmode { cl c/g c/f }

{2
\ U7

G

S
©

dé
$16¢9

A bass note can be added instead of transposed out of the chord, by using /+pitch.
\chordmode { cl c/+g c/+f }

)
Z

{
A §

P

S S
© ©-
O

$1¢¢9

Chords is a mode similar to \1lyricmode, etc. Most of the commands continue to work, for
example, r and \skip can be used to insert rests and spaces, and property commands may be
used to change various settings.

Bugs
Each step can only be present in a chord once. The following simply produces the augmented
chord, since 5+ is interpreted last

\chordmode { c:5.5-.5+ }

7.2.3 Printing chord names

For displaying printed chord names, use the ChordNames context. The chords may be entered
either using the notation described above, or directly using < and >

harmonies = {

\chordmode {al b c} <d' f' a'> <e' g' b'>
+
<<

\new ChordNames \harmonies

\new Staff \harmonies

>>
A B C Dm Em
() M
)" 4 114> P.L. 24
4\ FENIN O] o e Pa
N _ UTCO ' ~F Py <« P4
ANV =4 4 =4
oJ S o ©

Chapter 7: Instrument-specific notation 116

You can make the chord changes stand out by setting ChordNames.chordChanges to true.
This will only display chord names when there is a change in the chords scheme and at the start
of a new line

harmonies = \chordmode {
cl:m c:m \break c:m c:m d
}
<<
\new ChordNames {
\set chordChanges = #it
\harmonies }
\new Staff \transpose c c' \harmonies
>>

D
o) e

| ©
D<d D<d o &
[@) [@) mF

31
"4
7\

[arY

ANV

oJ

ey

The previous examples all show chords over a staff. This is not necessary. Chords may
also be printed separately. It may be necessary to add Volta_engraver and Bar_engraver for
showing repeats.

\new ChordNames \with {
\override BarLine #'bar-size = #4
voltaOnThisStaff = ##t
\consists Bar_engraver
\consists "Volta_engraver"

}

\chordmode { \repeat volta 2 {
fl:maj7 £:7 bes:7

c:maj7
} \alternative {
es e
}
}
[1. Il 2
U L C N Ca

The default chord name layout is a system for Jazz music, proposed by Klaus Ignatzek (see
Appendix A [Literature list], page 309). It can be tuned through the following properties

Chapter 7: Instrument-specific notation 117

chordNameExceptions
This is a list that contains the chords that have special formatting.

The exceptions list should be encoded as
{ <c f g bes>1 \markup { \super "7" "wahh" } }

To get this information into chordNameExceptions takes a little manoeuvring. The
following code transforms chExceptionMusic (which is a sequential music) into a
list of exceptions.

(sequential-music-to-chord-exceptions chExceptionMusic #t)
Then,

(append
(sequential-music-to-chord-exceptions chExceptionMusic #t)
ignatzekExceptions)

adds the new exceptions to the default ones, which are defined in ‘ly/chord
-modifier-init.ly’.

For an example of tuning this property, see also ‘input/regression/chord-name
-exceptions.ly’.

majorSevenSymbol
This property contains the markup object used for the 7th step, when it is ma-
jor. Predefined options are whiteTriangleMarkup and blackTriangleMarkup. See
‘input/regression/chord-name-major7.1ly’ for an example.

chordNameSeparator
Different parts of a chord name are normally separated by a slash. By setting
chordNameSeparator, you can specify other separators, e.g.,

\new ChordNames \chordmode {
c:7sus4
\set chordNameSeparator
= \markup { \typewriter "|" }
c:7sus4

7/susd ~7|sus4
c’/sus4 7l

chordRootNamer
The root of a chord is usually printed as a letter with an optional alteration. The
transformation from pitch to letter is done by this function. Special note names (for
example, the German “H” for a B-chord) can be produced by storing a new function
in this property.

chordNoteNamer
The default is to print single pitch, e.g., the bass note, using the chordRootNamer.
The chordNoteNamer property can be set to a specialized function to change this
behavior. For example, the base can be printed in lower case.

chordPrefixSpacer
The “m” for minor chords is usually printed right after the root of the chord. By
setting chordPrefixSpacer, you can fix a spacer between the root and “m”. The
spacer is not used when the root is altered.

The predefined variables \germanChords, \semiGermanChords, \italianChords and
\frenchChords set these variables. The effect is demonstrated here,

Chapter 7: Instrument-specific notation 118

default E/D Cm B/B B#/B# Bb/Bb
german E/d Cm H/h H#/hls B/b
semi-german E/d Cm H/h H#/ his Bl’/ b
talian Mi/Re Dom Si/Si Si#/si# sib/sib
french Mi/Ré Dom Si/Si Si#/si# sib/sib
0 e ®e Q
6Ci8 o |° | =
J foog o #U bo

There are also two other chord name schemes implemented: an alternate Jazz chord notation,
and a systematic scheme called Banter chords. The alternate Jazz notation is also shown on the
chart in Section C.1 [Chord name chart|, page 312. Turning on these styles is described in the
input file ‘input/test/chord-names-jazz.ly’.

Predefined commands

\germanChords, \semiGermanChords. \italianChords. \frenchChords.

See also

Examples: ‘input/regression/chord-name-major7.ly’, ‘input/regression/chord-name
-exceptions.ly’, ‘input/test/chord-names-jazz.ly’.

Init files: ‘scm/chords-ignatzek.scm’, and ‘scm/chord-entry.scm’.

Bugs

Chord names are determined solely from the list of pitches. Chord inversions are not identified,
and neither are added bass notes. This may result in strange chord names when chords are
entered with the < .. > syntax.

7.3 Vocal music
Since LilyPond input files are text, there are two issues to consider when working with vocal
music:

e Song texts must be entered as text, not notes. For example, the input d should be interpreted
as a one letter syllable, not the note D.

e Song texts must be aligned with the notes of their melody.

There are a few different ways to define lyrics; the simplest way is to use the \addlyrics
function.

Commonly tweaked properties

Checking to make sure that text scripts and lyrics are within the margins is a relatively large
computational task. To speed up processing, lilypond does not perform such calculations by
default; to enable it, use

\override Score.PaperColumn #'keep-inside-line = ##t
To make lyrics avoid barlines as well, use

\layout {
\context {
\Lyrics
\consists "Bar_engraver"
\consists "Separating_line_group_engraver"

Chapter 7: Instrument-specific notation 119

\override BarLine #'transparent = ##t
b
b

7.3.1 Setting simple songs

The easiest way to add lyrics to a melody is to append
\addlyrics { the lyrics %
to a melody. Here is an example,
\time 3/4
\relative { c2 e4 g2. }
\addlyrics { play the game }

0 .

)" 4 ¢ |
(o5—%— =
Y | i
eJ &

play the game

More stanzas can be added by adding more \addlyrics sections
\time 3/4
\relative { c2 e4 g2. }
\addlyrics { play the game }
\addlyrics { speel het spel }
\addlyrics { joue le jeu }

o

P

=
play the game
speel het spel
joue le jeu

The command \addlyrics cannot handle polyphony settings. For these cases you should
use \lyricsto and \lyricmode.

7.3.2 Entering lyrics

Lyrics are entered in a special input mode. This mode is introduced by the keyword \1lyricmode,
or by using \addlyrics or \lyricsto. In this mode you can enter lyrics, with punctuation and
accents, and the input d is not parsed as a pitch, but rather as a one letter syllable. Syllables
are entered like notes, but with pitches replaced by text. For example,

\lyricmode { Twin-4 kle4 twin- kle litt- le star2 }

There are two main methods to specify the horizontal placement of the syllables, either by
specifying the duration of each syllable explicitly, like in the example above, or by automatically
aligning the lyrics to a melody or other voice of music, using \addlyrics or \lyricsto. For
more details see Section 7.3.4 [The Lyrics context], page 121.

A word or syllable of lyrics begins with an alphabetic character, and ends with any space
or digit. The following characters can be any character that is not a digit or white space. One
important consequence of this is that a word can end with }. The following example is usually
a mistake in the input file. The syllable includes a }, so the opening brace is not balanced

Chapter 7: Instrument-specific notation 120

\lyricmode { twinkle}

Similarly, a period which follows an alphabetic sequence is included in the resulting string. As
a consequence, spaces must be inserted around property commands

\override Score . LyricText #'font-shape = #'italic

In order to assign more than one syllable to a single note, you can surround them with quotes
or use a _ character, to get spaces between syllables, or use tilde symbol (7) to get a lyric tie.
\time 3/4
\relative { c2 e4 g2 e4 %}
\addlyrics { gran- de_a- mi- go }
\addlyrics { pu- "ro y ho-" nes- to }
\addlyrics { pu- ro“y~ho- nes- to }

o

P

P
A

=
gran- de a- mi- go
pu- ro y ho- nes- to
pu-ro y ho- nes- to

The lyric ties is implemented with the Unicode character U+203F, so be sure to have a font
(Like DejaVuLGC) installed that includes this glyph.

To enter lyrics with characters from non-English languages, or with accented and special
characters (such as the heart symbol or slanted quotes), simply insert the characters directly
into the input file and save it with utf-8 encoding. See Section 10.1.7 [Text encoding], page 238
for more info.

\relative { e4 f e d e f e2 }
\addlyrics { He said: Let my peo ple go . }

DO

Y) i
& '—‘ &

I

He said: “Let my peo ple go”.

To use normal quotes in lyrics, add a backslash before the quotes. For example,

\relative c¢' { \time 3/4 e4 e4. e8 d4 e d c2. }
\addlyrics { "\"I" am so lone- "ly\"" said she }

"4
7 4
[{an Y

° @

=
"I am solone-ly"said she

The full definition of a word start in Lyrics mode is somewhat more complex.

A word in Lyrics mode begins with: an alphabetic character, _, 7, !, :, ' the control
characters ~A through “F, ~Q through "W, °Y, ==, any 8-bit character with ASCII code over 127,
or a two-character combination of a backslash followed by one of ', | ", or ~.

To define indentifiers containing lyrics, the function lyricmode must be used.

Chapter 7: Instrument-specific notation 121

verseOne = \lyricmode { Joy to the world the Lord is come }

\score {
<<
\new Voice = "one" \relative c'' {
\autoBeamOff
\time 2/4
c4 b8. al6 g4. £8 e4 d c2
}
\addlyrics { \verseOne }
>>
}
See also

Program reference: LyricText, LyricSpace.

7.3.3 Hyphens and extenders

¢

Centered hyphens are entered as ‘==’ between syllables. The hyphen will have variable length
depending on the space between the syllables and it will be centered between the syllables.

When a lyric is sung over many notes (this is called a melisma), this is indicated with a
horizontal line centered between a syllable and the next one. Such a line is called an extender
line, and it is entered as ‘__’ .

In tighly engraved music, hyphens can be removed. Whether this happens can be controlled
with the minimum-distance (minimum distance between two syllables) and the minimum-length
(threshold below which hyphens are removed).

See also

Program reference: LyricHyphen, LyricExtender.

7.3.4 The Lyrics context

Lyrics are printed by interpreting them in the context called Lyrics.
\new Lyrics \lyricmode ...

This will place the lyrics according to the durations that were entered. The lyrics can also
be aligned under a given melody automatically. In this case, it is no longer necessary to enter
the correct duration for each syllable. This is achieved by combining the melody and the lyrics
with the \1lyricsto expression

\new Lyrics \lyricsto name

This aligns the lyrics to the notes of the Voice context called name, which must already
exist. Therefore normally the Voice is specified first, and then the lyrics are specified with
\lyricsto. The command \lyricsto switches to \lyricmode mode automatically, so the
\lyricmode keyword may be omitted.

The following example uses different commands for entering lyrics.

<<
\new Voice = "one" \relative c'' {
\autoBeamOff
\time 2/4
c4 b8. al6 g4. £8 e4d d c2
}

\new Lyrics \lyricmode { Joy4 to8. thel6 world!4. the8 Lord4 is come.2 }
\new Lyrics \lyricmode { Joy to the earth! the Sa -- viour reigns. }

Chapter 7: Instrument-specific notation 122

\new Lyrics \lyricsto "one" { No more let sins and sor -- rows grow.
>>
ﬁﬁ
y .)
o ! 4 =
Joy to theworld!the Lord is come.
Joy to the earth! the Sa - viour
Nomorelet sins and sor-rows grow.
8
reigns.

The second stanza is not properly aligned because the durations were not specified. A solution
for that would be to use \lyricsto.

The \addlyrics command is actually just a convenient way to write a more complicated
LilyPond structure that sets up the lyrics.

{ MUSIC }
\addlyrics { LYRICS }

is the same as

\new Voice = "blah" { music }
\new Lyrics \lyricsto "blah" { LYRICS }

For different or more complex orderings, the best way is to setup the hierarchy of staves and
lyrics first, e.g.,

\new ChoirStaff <<

\new Voice = "soprano" { music }
\new Lyrics = "sopranoLyrics" { s1 }
\new Lyrics = "tenorLyrics" { s1 }
\new Voice = "tenor" { music }

>>

and then combine the appropriate melodies and lyric lines

\context Lyrics = sopranoLyrics \lyricsto "soprano"
the lyrics

The final input would resemble

<<\new ChoirStaff << setup the music >>
\lyricsto "soprano" etc
\lyricsto "alto" etc
etc

>>

See also

Program reference: LyricCombineMusic, Lyrics.

Chapter 7: Instrument-specific notation 123

7.3.5 Melismata

The \1lyricsto command detects melismata: it only puts one syllable under a tied or slurred
group of notes. If you want to force an unslurred group of notes to be a melisma, insert \melisma
after the first note of the group, and \melismaEnd after the last one, e.g.,

<<

\new Voice = "lala" {
\time 3/4
f4 g8
\melisma
fef
\melismaEnd
e2

}

\new Lyrics \lyricsto "lala" {
la di __ daah

}

>>

T

NGy

la di daah

In addition, notes are considered a melisma if they are manually beamed, and automatic
beaming (see Section 9.1.2 [Setting automatic beam behavior|, page 215) is switched off.

A complete example of a SATB score setup is in section Section D.4 [Vocal ensembles],
page 329.

Predefined commands

\melisma, \melismaEnd

See also

Program reference: Melisma_translator.

‘input/regression/lyric-combine-new.ly’.

Bugs

Melismata are not detected automatically, and extender lines must be inserted by hand.

7.3.6 Another way of entering lyrics

Lyrics can also be entered without \1lyricsto. In this case the duration of each syllable must
be entered explicitly, for example,

play2 the4 game2.
sink2 or4 swim2.

The alignment to a melody can be specified with the associatedVoice property,
\set associatedVoice = #"lala"

The value of the property (here: "lala") should be the name of a Voice context. Without this
setting, extender lines will not be formatted properly.

Here is an example demonstrating manual lyric durations,

Chapter 7: Instrument-specific notation

<< \new Voice = "melody" {
\time 3/4
c2 ed g2.
}
\new Lyrics \lyricmode
\set associatedVoice
play2 thed game2.

-~

#"melody"

T >>
0] .
)" 4 |
e <

play the game

7.3.7 Flexibility in placement

Often, different stanzas of one song are put to one melody in slightly differing ways.

variations can still be captured with \lyricsto

7.3.7.1 Lyrics to multiple notes of a melisma

124

Such

One possibility is that the text has a melisma in one stanza, but multiple syllables in another
one. One solution is to make the faster voice ignore the melisma. This is done by setting

ignoreMelismata in the Lyrics context.

There is one tricky aspect: the setting for ignoreMelismata must be set one syllable before

the non-melismatic syllable in the text, as shown here,

<<

\relative \new Voice = "lahlah" {
\set Staff.autoBeaming = ##f
cd
\slurDotted
£8.[(gi6])
a4

}

\new Lyrics \lyricsto "lahlah" {
more slow -- ly

}
\new Lyrics \lyricsto "lahlah" {

\set ignoreMelismata = ##t 7 applies to "fas"

go fas -- ter
\unset ignoreMelismata
still
}
>>
0
)’ A r—|
7\ r @) |
R R
oJ ¢

more slow - ly
go fasterstill

Chapter 7: Instrument-specific notation 125

The ignoreMelismata applies to the syllable “fas”, so it should be entered before “go”.

The reverse is also possible: making a lyric line slower than the standard. This can be
achieved by insert \skips into the lyrics. For every \skip, the text will be delayed another
note. For example,

\relative { c c g' }
\addlyrics {
twin -- \skip 4
kle
}

N &1

P

o o
twin - kle

7.3.7.2 Divisi lyrics

You can display alternate (or divisi) lyrics by naming voice contexts and attaching lyrics to
those specific contexts.

\score{ <<

\new Voice = "melody" {
\relative c' {
c4d
<<
{ \voiceOne c8 e }
\new Voice = "splitpart" { \voiceTwo c4 }
>>
\oneVoice c4 c | ¢

}
}
\new Lyrics \lyricsto "melody" { we shall not o- ver- come }
\new Lyrics \lyricsto "splitpart" { will }

>> }
0)
Xli. p—)
[[« YA | | | |
o JTL‘.. o

we shall not o- ver- come

will

You can use this trick to display different lyrics for a repeated section.

\score{ <<

\new Voice = "melody" \relative c' {
c2e |l ge | c1|
\new Voice = "verse" \repeat volta 2 {c4 de f | g1 | }
a2 b | c1}

\new Lyrics = "mainlyrics" \lyricsto melody \lyricmode {
do mi sol mi do
la si do }

Chapter 7: Instrument-specific notation 126

\context Lyrics = "mainlyrics" \lyricsto verse \lyricmode {
do re mi fa sol }
\new Lyrics = "repeatlyrics" \lyricsto verse \lyricmode {
dodo rere mimi fafa solsol }

>>

}

() .

)" 4) | | | | |
4\ r £) | | | 1D Q| |
[fan YA W] | -~ | 1D o> Q| |
A\IV4 -~ e = | | ~F | |
[y s - o <

do mi sol mi do do re mi fa sol
dodo rere mimi fafa solsol
60

)" 4
/\ - [@)
[[an) &) |
ANV |
U |

la si do

7.3.7.3 Switching the melody associated with a lyrics line

More complex variations in text underlay are possible. It is possible to switch the melody for
a line of lyrics during the text. This is done by setting the associatedVoice property. In the
example

() — 3 N

)" 4 N\

4\ r £} \ \)

oy - -

[Y) & rr
Ju - ras - sic Park

Tyran - nosau-rus Rex

the text for the first stanza is set to a melody called “lahlah”,

\new Lyrics \lyricsto "lahlah" {
Ju -- ras -- sic Park

¥

The second stanza initially is set to the 1ahlah context, but for the syllable “ran”, it switches
to a different melody. This is achieved with

\set associatedVoice = alternative
Here, alternative is the name of the Voice context containing the triplet.
Again, the command must be one syllable too early, before “Ty” in this case.

\new Lyrics \lyricsto "lahlah" {
\set associatedVoice = alternative % applies to "ran"

Ty —-

ran --

no --

\set associatedVoice = lahlah % applies to "rus"
sau -- rus Rex

}

The underlay is switched back to the starting situation by assigning 1ahlah to associatedVoice.

Chapter 7: Instrument-specific notation 127

7.3.7.4 Specifying melismata within the lyrics

It is also possible to define melismata entirely in the lyrics. This can be done by entering _ for
every note that is part of the melisma.

{ \set melismaBusyProperties = #'()
cd(e) ff(e)ee }

\addlyrics

{Ky ——-__ri_____ e}
o)
)’ 4 !
£\ r) | | |
'(“ \ U7 | | |
R S

Ky - ri e

In this case, you can also have ties and slurs in the melody if you set melismaBusyProperties,
as is done in the example above.

7.3.7.5 Lyrics independent of notes

In some complex vocal music, it may be desirable to place lyrics completely independently of
notes. Music defined inside 1lyricrhythm disappears into the Devnull context, but the rhythms
can still be used to place the lyrics.

voice = {
c''2
\tag #'music { c¢''2 }
\tag #'lyricrhythm { c''4. c''8 }
d''1l

lyr = \lyricmode { I like my cat! }

<<
\new Staff \keepWithTag #'music \voice
\new Devnull="nowhere" \keepWithTag #'lyricrhythm \voice
\new Lyrics \lyricsto "nowhere" \lyr
\new Staff { ¢'8 ¢c' ¢' ¢' ¢' ¢' ¢c' ¢!
c' c¢c'c'c'cc'c ¢}
>>

Gz e
C

I like my cat!

P>
C

dessdsss sesssses

7.3.8 Spacing lyrics

To increase the spacing between lyrics, set the minimum-distance property of LyricSpace.

Chapter 7: Instrument-specific notation 128

cccc
\override Lyrics.LyricSpace #'minimum-distance = #1.0
cccc
b
\addlyrics {
longtext longtext longtext longtext
longtext longtext longtext longtext
b

an
N (@4

G

- - - o

longtext longtext longtext longtext

20
)" 4
g\

[FanY

ANV,

dJ 4 & & &

longtext longtext longtext longtext

7

To make this change for all lyrics in the score, set the property in the layout.

\score {
{
cccc
cccc
b
\addlyrics {
longtext longtext longtext longtext
longtext longtext longtext longtext
b
\layout {
\context {
\Lyrics
\override LyricSpace #'minimum-distance = #1.0
b
3

N @]

G

> - -
longtext longtext longtext longtext

Chapter 7: Instrument-specific notation 129

20

Gy

ol
ol
ol
ol

longtext longtext longtext longtext

7.3.9 More about stanzas

7.3.9.1 Adding stanza numbers

Stanza numbers can be added by setting stanza, e.g.,

\new Voice {

\time 3/4 g2 e4 a2 f4 g2.
} \addlyrics {

\set stanza = "1. "

Hi, my name is Bert.
} \addlyrics {

\set stanza = "2. "
Oh, che -- ri, je t'aime
}
0] . | .
)" 4 ¢ | | |
/\ e | | |
[[an) -~ 7 =0
SY = =
[y

1. Hi, mynameis Bert.
2. Oh,che-ri, jet'aime

These numbers are put just before the start of the first syllable.

7.3.9.2 Adding dynamics marks

Stanzas differing in loudness may be indicated by putting a dynamics mark before each stanza.
In Lilypond, everthing coming in front of a stanza goes into the StanzaNumber object; dynamics
marks are no different. For technical reasons, you have to set the stanza outside \lyricmode:

text = {
\set stanza = \markup { \dynamic "ff" "1. " }
\lyricmode {
Big bang
}
}

<<
\new Voice = "tune" {
\time 3/4
g'd c'2
}
\new Lyrics \lyricsto "tune" \text
>>

0
pat !
oJ

<

Jf1. Bigbang

Chapter 7: Instrument-specific notation 130

7.3.9.3 Adding singer names

Names of singers can also be added. They are printed at the start of the line, just like in-
strument names. They are created by setting vocalName. A short version may be entered as
shortVocalName.

\new Voice {
\time 3/4 g2 e4 a2 f4 g2.
} \addlyrics {
\set vocalName = "Bert "
Hi, my name is Bert.
} \addlyrics {

\set vocalName = "Ernie "
Oh, che -- ri, je t'aime
}
o)
)4 ¢)
/\ [|
@ = ‘| 7 =D
eJ
Bert Hi, my nameis Bert.
Ernie Oh, che - ri, jet'aime

7.3.9.4 Printing stanzas at the end

Sometimes it is appropriate to have one stanza set to the music, and the rest added in verse
form at the end of the piece. This can be accomplished by adding the extra verses into a
\markup section outside of the main score block. Notice that there are two different ways to
force linebreaks when using \markup.

melody = \relative c' {
edcdl| eeeece |
dded | c1|

}

text = \lyricmode {
\set stanza = "1." Ma- ry had a lit- tle lamb,
its fleece was white as snow.

}
\book{
\score{ <<
\new Voice = "one" { \melody }
\new Lyrics \lyricsto "one" \text
>>
\layout { }
}

\markup { \column{
\line{ Verse 2. }
\line{ A1l the children laughed and played }
\line{ To see a lamb at school. }
}
}
\markup{

Chapter 7: Instrument-specific notation 131

\wordwrap-string #"
Verse 3.

Mary took it home again,

It was against the rule."

Chapter 7: Instrument-specific notation 132

y - i i i
\ U7

o —o o

P>

o @ =
1. Ma-ryhad a lit-tlelamb, its fleece was white as snow.

Verse 2.
All the children laughed and played
To see a lamb at school.

Verse 3.
Mary took it home again,
It was against the rule.

Chapter 7: Instrument-specific notation

7.3.9.5 Printing stanzas at the end in multiple columns

133

When a piece of music has many verses, they are often printed in multiple columns across the
page. An outdented verse number often introduces each verse. The following example shows

how to produce such output in Lilypond.

melody = \relative c' {
ccccldddd
}

text = \lyricmode {
\set stanza = "1." This is verse one.
It has two lines.

\score{ <<
\new Voice = "one" { \melody }
\new Lyrics \lyricsto "one" \text
>>
\layout { }
}

\markup {
\fill-line {

\hspace #0.1 % moves the column off the left margin; can be removed if

% space on the page is tight
\column {
\line { \bold "2."
\column {
"This is verse two."
"It has two lines."
b
b
\hspace #0.1 % adds vertical spacing between verses
\line { \bold "3."
\column {
"This is verse three."
"It has two lines."
}
3
}

\hspace #0.1 7 adds horizontal spacing between columns; if they are

% still too close, add more " " pairs until the result
% looks good
\column {
\line { \bold "4."
\column {
"This is verse four."
"It has two lines."
}
}
\hspace #0.1 % adds vertical spacing between verses
\line { \bold "5."

Chapter 7: Instrument-specific notation 134

\column {
"This is verse five."
"It has two lines."
}
}
}
\hspace #0.1 % gives some extra space on the right margin; can
% be removed if page space is tight
}
}

Chapter 7: Instrument-specific notation

2. This is verse two.
It has two lines.

3. This is verse three.

It has two lines.

135

4. This is verse four.
It has two lines.

5. This is verse five.
It has two lines.

Chapter 7: Instrument-specific notation 136

See also

Program reference: LyricText, StanzaNumber, VocalName.

7.3.10 Ambitus

The term ambitus denotes a range of pitches for a given voice in a part of music. It may also
denote the pitch range that a musical instrument is capable of playing. Ambits are printed on
vocal parts, so performers can easily determine it meets their capabilities.

Ambits are denoted at the beginning of a piece near the initial clef. The range is graphically
specified by two note heads that represent the minimum and maximum pitch. To print such
ambits, add the Ambitus_engraver to the Voice context, for example,

\layout {
\context {
\Voice
\consists Ambitus_engraver

}
}

This results in the following output

TP

-
To be®
L' 4 1h
:#II\ r £ 7
[(av YA O]]
ANV I

oJ

If you have multiple voices in a single staff and you want a single ambitus per staff rather
than per each voice, add the Ambitus_engraver to the Staff context rather than to the Voice
context. Here is an example,

\new Staff \with {
\consists "Ambitus_engraver"
}
<<
\new Voice \with {
\remove "Ambitus_engraver"
} \relative c'' {
\override Ambitus #'X-offset = #-1.0
\voiceOne
c4d ade f2
}
\new Voice \with {
\remove "Ambitus_engraver"
} \relative c' {
\voiceTwo
es4 £ g as b2

)
=

Chapter 7: Instrument-specific notation 137

This example uses one advanced feature,
\override Ambitus #'X-offset = #-1.0
This code moves the ambitus to the left. The same effect could have been achieved with extra-

offset, but then the formatting system would not reserve space for the moved object.
See also

Program reference: Ambitus, AmbitusLine, AmbitusNoteHead, AmbitusAccidental.
Examples: ‘input/regression/ambitus.ly’.

Bugs

There is no collision handling in the case of multiple per-voice ambitus.

7.3.11 Other vocal issues

“Parlato” is spoken without pitch but still with rhythm; it is notated by cross noteheads. This
is demonstrated in Section 8.4.5 [Special noteheads|, page 205.

7.4 Rhythmic music

Rhythmic music is primarily used for percussion and drum notation, but it can also be used to
show the rhythms of melodies.

7.4.1 Showing melody rhythms

Sometimes you might want to show only the rhythm of a melody. This can be done with the
rhythmic staff. All pitches of notes on such a staff are squashed, and the staff itself has a single
line
\new RhythmicStaff {
\time 4/4
cd e8 f g2 | r4dgr2 | g1:32 | rl1 |

b
edddlpd-15 1

See also

Program reference: RhythmicStaff.
Examples: ‘input/regression/rhythmic-staff.ly’.

7.4.2 Entering percussion

Percussion notes may be entered in \drummode mode, which is similar to the standard mode for
entering notes. Each piece of percussion has a full name and an abbreviated name, and both
can be used in input files

\drums {
hihat hh bassdrum bd

The complete list of drum names is in the init file ‘1y/drumpitch-init.1ly’.

Chapter 7: Instrument-specific notation 138

See also

Program reference: note-event.

7.4.3 Percussion staves

A percussion part for more than one instrument typically uses a multiline staff where each
position in the staff refers to one piece of percussion.

To typeset the music, the notes must be interpreted in a DrumStaff and DrumVoice contexts

up = \drummode { crashcymbal4 hihat8 halfopenhihat hh hh hh openhihat }
down = \drummode { bassdrum4 snare8 bd r bd sn4 }
\new DrumStaff <<
\new DrumVoice { \voiceOne \up }
\new DrumVoice { \voiceTwo \down }
>>

The above example shows verbose polyphonic notation. The short polyphonic notation,
described in Section 6.3.3 [Basic polyphony], page 70, can also be used if the DrumVoices are
instantiated by hand first. For example,

\new DrumStaff <<
\new DrumVoice " { s1 %2 }
\new DrumVoice = "2" { s1 %2 }
\drummode {
bd4 sn4 bd4 sné

<<
{ \repeat unfold 16 hhi16 }
\\
{ bd4 sn4 bd4 sn4 }
>>
}
>>

| . | e |

There are also other layout possibilities. To use these, set the property drumStyleTable in
context DrumVoice. The following variables have been predefined

drums-style
This is the default. It typesets a typical drum kit on a five-line staff

+ 0

X

cymc cyms cymr hh hhc hho hhho hhp

Chapter 7: Instrument-specific notation 139

»
» r X e @
[]

cb hc bd sn ss tomh tommh

_‘ .

tomml toml tomfh tomfl

The drum scheme supports six different toms. When there are fewer toms, simply
select the toms that produce the desired result, i.e., to get toms on the three middle
lines you use tommh, tomml, and tomfh.

timbales-style
This typesets timbales on a two line staff

X

" @

X

timh sshtiml ssl cb

congas-style
This typesets congas on a two line staff

0 +

cgh cgho cghm ssh cgl cglocglm ssl

bongos-style
This typesets bongos on a two line staff

0 +

boh boho bohm ssh bol bolobolm ssl

percussion-style
To typeset all kinds of simple percussion on one line staves.

0o +

H—x—x— %o o e y» o o x o o

tritriotrimguiguisquil cb cltamb cabmar hc

Chapter 7: Instrument-specific notation 140

If you do not like any of the predefined lists you can define your own list at the top of your
file

#(define mydrums ' (

(bassdrum default #f -1)
(snare default #f 0)
(hihat cross #f 1)
(pedalhihat xcircle "stopped" 2)
(lowtom diamond #f 3)))

up = \drummode { hh8 hh hh hh hhp4 hhp }
down = \drummode { bd4 sn bd toml8 toml }

\new DrumStaff <<
\set DrumStaff.drumStyleTable = #(alist->hash-table mydrums)
\new DrumVoice { \voiceOne \up }

\new DrumVoice { \voiceTwo \down }
>>

See also
Init files: ‘ly/drumpitch-init.ly’.

Program reference: DrumStaff, DrumVoice.

Bugs

Because general MIDI does not contain rim shots, the sidestick is used for this purpose instead.

7.4.4 Ghost notes

Ghost notes for drums and percussion may be created using the \parenthesize command
detailed in Section 8.5.8 [Parentheses|, page 211. However, the default \drummode does not
include the Parenthesis_engraver plugin which allows this. You must add the plugin explicitly
in the context definition as detailed in Section 9.2.3 [Changing context properties on the fly],
page 220.
\new DrumStaff \with {
\consists "Parenthesis_engraver"

} <<
\context DrumVoice = "1" { s1 *2 }
\context DrumVoice = "2" { s1 *2 }
\drummode {
<<

{
hh8[hh] <hh sn> hhl6
< \parenthesize sn > hh < \parenthesize
sn > hh8 <hh sn> hh
FANA
bd4 r4 bd8 bd r8 bd

>>

Chapter 7: Instrument-specific notation 141

] = =)
D¢) " A—

F—c 77

Also note that you must add chords (< > brackets) around each \parenthesize statement.

7.5 Guitar

7.5.1 String number indications

String numbers can be added to chords, by indicating the string number with \number,

®
@

@™

See also ‘input/regression/string-number.ly’.

See also

Program reference: StringNumber.

7.5.2 Tablatures basic

Tablature notation is used for notating music for plucked string instruments. Pitches are not
denoted with note heads, but by numbers indicating on which string and fret a note must be
played. LilyPond offers limited support for tablature.

The string number associated to a note is given as a backslash followed by a number, e.g.,
c4\3 for a C quarter on the third string. By default, string 1 is the highest one, and the tuning
defaults to the standard guitar tuning (with 6 strings). The notes are printed as tablature, by
using TabStaff and TabVoice contexts

\new TabStaff {
a,4\5 c'\2 a\3 e'\1
e\4 c'\2 a\3 e'\1

}
— 0 0—
J O 1) 1)
U e e
-B——0

When no string is specified, the first string that does not give a fret number less than
minimumFret is selected. The default value for minimumFret is 0

el6 fis gis a b4
\set TabStaff.minimumFret = #8
el6 fis gis a b4

Chapter 7: Instrument-specific notation 142

VAW

X ! i

[FanY b (I \ W

g RS ——

8

N P 0

1-2
\ 97
2—4 9

L2 | 9—11-12

\

Commonly tweaked properties

To print tablatures with stems down and horizontal beams, initialize the TabStaff with this
code:

\stemDown
\override Beam #'damping = #100000

See also

Program reference: TabStaff, TabVoice.

Bugs

Chords are not handled in a special way, and hence the automatic string selector may easily
select the same string to two notes in a chord.

7.5.3 Non-guitar tablatures

You can change the tuning of the strings. A string tuning is given as a Scheme list with one
integer number for each string, the number being the pitch (measured in semitones relative
to middle C) of an open string. The numbers specified for stringTuning are the numbers of
semitones to subtract or add, starting the specified pitch by default middle C, in string order.
LilyPond automatically calculates the number of strings by looking at stringTuning.

In the next example, stringTunings is set for the pitches e, a, d, and g

\new TabStaff <<
\set TabStaff.stringTunings = #'(-5 -10 -15 -20)

Ja 529 529

LilyPond comes with predefined string tunings for banjo, mandolin, guitar and bass guitar.
\set TabStaff.stringTunings = #bass-tuning
The default string tuning is guitar-tuning (the standard EADGBE tuning). Some other
predefined tunings are guitar-open-g-tuning, mandolin-tuning and banjo-open-g-tuning.
See also

The file ‘scm/output-1ib.scm’ contains the predefined string tunings. Program reference: Tab_
note_heads_engraver.

Bugs

No guitar special effects have been implemented.

Chapter 7: Instrument-specific notation 143

7.5.4 Banjo tablatures

LilyPond has basic support for five stringed banjo. When making tablatures for five stringed
banjo, use the banjo tablature format function to get correct fret numbers for the fifth string:

\new TabStaff <<
\set TabStaff.tablatureFormat = #fret-number-tablature-format-banjo
\set TabStaff.stringTunings = #banjo-open-g-tuning
{
\stemDown
g8 d' g'\babged' |
g4 d''8\5 b' a'\2 g'\5 e'\2 d' |
gé

(=]
=]
©
=]

I 0 10

(S]]

12

— N

—S

— <

A number of common tunings for banjo are predefined in LilyPond: banjo-c-tuning
(¢CGBD), banjo-modal-tuning (gDGCD), banjo-open-d-tuning (aDF#AD) and banjo-
open-dm-tuning (aDFAD).

These tunings may be converted to four string banjo tunings using the four-string-banjo
function:

\set TabStaff.stringTunings = #(four-string-banjo banjo-c-tuning)

See also

The file ‘scm/output-1ib.scm’ contains predefined banjo tunings.

7.5.5 Fret diagrams

Fret diagrams can be added to music as a markup to the desired note. The markup contains
information about the desired fret diagram, as shown in the following example

\new Voice {
d' "\markup \fret-diagram #"6-x;5-x;4-0;3-2;2-3;1-2;"
d' 4' d'
fis'"\markup \override #'(size . 0.75) {
\override #'(finger-code . below-string) {
\fret-diagram-verbose #'((place-fret 6 2 1) (barre 6 1 2)
(place-fret 5 4 3) (place-fret 4 4 4)
(place-fret 3 3 2) (place-fret 2 2 1)
(place-fret 1 2 1))
}
}
fis' fis' fis'
c¢'“\markup \override #'(dot-radius . 0.35) {
\override #'(finger-code . in-dot) {
\override #'(dot-color . white) {
\fret-diagram-terse #"x;3-1-(;5-2;5-3;5-4;3-1-);"
}
}

Chapter 7: Instrument-specific notation 144

}
c' c' c'
}
XXO X
iii
n 342
)" 4
£\ r £))))
[[an YA W] 1L | | |
1L | | |
" ¢ o 0 o

Y

There are three different fret-diagram markup interfaces: standard, terse, and verbose. The
three interfaces produce equivalent markups, but have varying amounts of information in the
markup string. Details about the markup interfaces are found at Section 8.1.6 [Overview of text

markup commands], page 174.

You can set a number of graphical properties according to your preference. Details about
the property interface to fret diagrams are found at fret-diagram-interface.

See also
Examples: ‘input/test/fret-diagram.ly’

7.5.6 Right hand fingerings
Right hand fingerings in chords can be entered using note-\rightHandFinger finger
<c-\rightHandFinger #1 e-\rightHandFinger #2 >

for brevity, you can abbreviate \rightHandFinger to something short, for example RH,

#(define RH rightHandFinger)

Commonly tweaked properties

You may exercise greater control over right handing fingerings by setting
strokeFingerOrientations,

#(define RH rightHandFinger)

{
\set strokeFingerOrientations = #'(up down)
<c-\RH #1 es-\RH #2 g-\RH #4 > 4
\set strokeFingerOrientations = #'(up right down)
<c-\RH #1 es-\RH #2 g-\RH #4 > 4

Chapter 7: Instrument-specific notation 145

The letters used for the fingerings are contained in the property digit-names, but they
can also be set individually by supplying \rightHandFinger with a string argument, as in the
following example

#(define RH rightHandFinger)

{
\set strokeFingerOrientations = #'(right)
\override StrokeFinger #'digit-names = ##("x" "y" "z" "!" "@")
<c-\RH #5 >4
<c-\RH "@">4
}
0
"4
£\ r £}
[(v Y
ANV
oJ oade
See also

Internalls: StrokeFinger

7.5.7 Other guitar issues
This example demonstrates how to include guitar position and barring indications.

\clef "G_8"

bl6 d16 glé blé el6

\textSpannerDown

\override TextSpanner #'edge-text = #'("XII " . "")
gl6\startTextSpan
bl6 el6 gl6 el6 bl6 gl6\stopTextSpan

el6é bl6 gl6 di6

»Fe
0 . 2 EEF _
=0 === e
¢ » XIr- - - - - ¢

Stopped (X) note heads are used in guitar music to signal a place where the guitarist must play
a certain note or chord, with its fingers just touching the strings instead of fully pressing them.
This gives the sound a percussive noise-like sound that still maintains part of the original pitch.
It is notated with cross noteheads; this is demonstrated in Section 8.4.5 [Special noteheads],
page 205.

7.6 Bagpipe

7.6.1 Bagpipe definitions

LilyPond contains special definitions for music for the Scottish highland bagpipe; to use them,
add

\include "bagpipe.ly"

at the top of your input file. This lets you add the special gracenotes common to bagpipe music
with short commands. For example, you could write \taor instead of

Chapter 7: Instrument-specific notation 146

\grace { \small G32[d G e] }

bagpipe.ly also contains pitch definitions for the bagpipe notes in the appropiate octaves,
so you do not need to worry about \relative or \transpose.

\include "bagpipe.ly"
{ \grg G4 \grg a \grg b \grg c \grg d \grg e \grg f \grA g A }

s MDY b AN,
&—"eprr—f |

e) | | | |

Bagpipe music nominally uses the key of D Major (even though that isn’t really true).
However, since that is the only key that can be used, the key signature is normally not written
out. To set this up correctly, always start your music with \hideKeySignature. If you for some
reason want to show the key signature, you can use \showKeySignature instead.

Some modern music use cross fingering on ¢ and f to flatten those notes. This can be indicated
by cflat or fflat. Similarly, the piobaireachd high g can be written gflat when it occurs in
light music.

7.6.2 Bagpipe example

This is what the well known tune Amazing Grace looks like in bagpipe notation.

\include "bagpipe.ly"
\layout {
indent = 0.0\cm
\context { \Score \remove "Bar_number_engraver" }

}

\header {
title = "Amazing Grace"
meter = "Hymn"
arranger = "Trad. arr."

by

{
\hideKeySignature
\time 3/4
\grg \partial 4 a8. 416
\slurd d2 \grg £8[e32 d16.]
\grg 2 \grg 8 e
\thrwd d2 \grg b4
\grG a2 \grg a8. 416
\slurd d2 \grg £8[e32 d16.]
\grg f2 \grg e8. £16
\dblA A2 \grg A4
\grg A2 8. A16
\grg A2 \hdblf f8[e32 d16.]
\grg 2 \grg 8 e
\thrwd d2 \grg b4
\grG a2 \grg a8. d16
\slurd d2 \grg f8[e32 d16.]

Chapter 7: Instrument-specific notation

\grg £2

el

\thrwd d2.
\slurd d2

\bar "|.

n

Amazing Grace

Hymn Trad. arr.
. T, Loy o=))

— e
[Y) f—" — T T | —

7
=

P

TTTO

7.7 Ancient notation

ﬂn?“_ﬁg_ﬁ? i}?ﬁ; gﬁg.f‘i’ﬁ 13 i 3
74 — I B = !

147

Support for ancient notation includes features for mensural notation and Gregorian Chant no-

tation. There is also limited support for figured bass notation.

Many graphical objects provide a style property, see

e Section 7.7.1 [Ancient note heads|, page 148,

e Section 7.7.2 [Ancient accidentals], page 148,

[
[
[Ancient clefs], page 149,
[
[

Section 7.7.3 [Ancient rests|, page 149,
Section 7.7.4
Section 7.7.5 [Ancient flags], page 152,

Section 7.7.6 [Ancient time signatures|, page 152.

By manipulating such a grob property, the typographical appearance of the affected graphical
objects can be accommodated for a specific notation flavor without the need for introducing any
new notational concept.

In addition to the standard articulation signs described in section Section 6.6.1 [Articulations],
page 94, specific articulation signs for ancient notation are provided.

e Section 7.7.7 [Ancient articulations]|, page 153

Other aspects of ancient notation can not that easily be expressed in terms of just changing
a style property of a graphical object or adding articulation signs. Some notational concepts are

introduced specifically for ancient notation,

e Section 7.7.8 [Custodes|, page 154,
e Section 7.7.9 [Divisiones|, page 155,

Chapter 7: Instrument-specific notation 148

e Section 7.7.10 [Ligatures], page 155.

If this all is too much of documentation for you, and you just want to dive into typesetting
without worrying too much about the details on how to customize a context, you may have
a look at the predefined contexts. Use them to set up predefined style-specific voice and staff
contexts, and directly go ahead with the note entry,

e Section 7.7.11 [Gregorian Chant contexts|, page 162,
e Section 7.7.12 [Mensural contexts|, page 162.

There is limited support for figured bass notation which came up during the baroque period.
e Section 7.7.14 [Figured bass], page 164

Here are all suptopics at a glance:

7.7.1 Ancient note heads

For ancient notation, a note head style other than the default style may be chosen. This is
accomplished by setting the style property of the NoteHead object to baroque, neomensural,
mensural or petrucci. The baroque style differs from the default style only in using a square
shape for \breve note heads. The neomensural style differs from the baroque style in that it
uses thomboidal heads for whole notes and all smaller durations. Stems are centered on the note
heads. This style is particularly useful when transcribing mensural music, e.g., for the incipit.
The mensural style produces note heads that mimic the look of note heads in historic printings
of the 16th century. Finally, the petrucci style also mimicks historic printings, but uses bigger
note heads.

The following example demonstrates the neomensural style

\set Score.skipBars = ##t
\override NoteHead #'style = #'neomensural
a'\longa a'\breve a'l a'2 a'4 a'8 a'l6

-

r)
\ U7

=l || () &7

P

When typesetting a piece in Gregorian Chant notation, the Gregorian_ligature_engraver
will automatically select the proper note heads, so there is no need to explicitly set the note
head style. Still, the note head style can be set, e.g., to vaticana_punctum to produce punctum
neumes. Similarly, a Mensural_ligature_engraver is used to automatically assemble mensural
ligatures. See Section 7.7.10 [Ligatures], page 155 for how ligature engravers work.

See also

Examples: ‘input/regression/note-head-style.ly’ gives an overview over all available note
head styles.

7.7.2 Ancient accidentals

Use the style property of grob Accidental to select ancient accidentals. Supported styles are
mensural, vaticana, hufnagel, and medicaea.

vaticana medicaea hufnagel mensural
sk b L b x

Chapter 7: Instrument-specific notation 149

As shown, not all accidentals are supported by each style. When trying to access an unsup-
ported accidental, LilyPond will switch to a different style, as demonstrated in ‘input/test/
ancient-accidentals.ly’.

Similarly to local accidentals, the style of the key signature can be controlled by the style
property of the KeySignature grob.

See also

In this manual: Section 6.1 [Pitches|, page 59, Section 6.1.3 [Cautionary accidentals|, page 61
and Section 9.1.1 [Automatic accidentals], page 213 give a general introduction of the use of
accidentals. Section 6.4.2 [Key signature|, page 77 gives a general introduction of the use of key
signatures.

Program reference: KeySignature.

Examples: ‘input/test/ancient-accidentals.ly’.

7.7.3 Ancient rests

Use the style property of grob Rest to select ancient rests. Supported styles are classical,
neomensural, and mensural. classical differs from the default style only in that the quarter
rest looks like a horizontally mirrored 8th rest. The neomensural style suits well for, e.g.,
the incipit of a transcribed mensural piece of music. The mensural style finally mimics the
appearance of rests as in historic prints of the 16th century.

The following example demonstrates the neomensural style

\set Score.skipBars = ##t
\override Rest #'style = #'neomensural
r\longa r\breve rl r2 r4 r8 ri6

N &1

P

There are no 32th and 64th rests specifically for the mensural or neo-mensural style. Instead,
the rests from the default style will be taken. See ‘input/test/rests.ly’ for a chart of all
rests.

There are no rests in Gregorian Chant notation; instead, it uses Section 7.7.9 [Divisiones],
page 155.

See also

In this manual: Section 6.1.9 [Rests|, page 64 gives a general introduction into the use of rests.

7.7.4 Ancient clefs

LilyPond supports a variety of clefs, many of them ancient.

The following table shows all ancient clefs that are supported via the \clef command. Some
of the clefs use the same glyph, but differ only with respect to the line they are printed on.
In such cases, a trailing number in the name is used to enumerate these clefs. Still, you can
manually force a clef glyph to be typeset on an arbitrary line, as described in Section 6.4.1 [Clef],
page 76. The note printed to the right side of each clef in the example column denotes the c'
with respect to that clef.

Description Supported Clefs Example

Chapter 7: Instrument-specific notation 150

modern style mensural C clef neomensural-cl, neomensural-c2,
neomensural-c3, neomensural-c4

B

petrucci style mensural C clefs, for use petrucci-c1, petrucci-c2,
on different staff lines (the examples petrucci-c3, petrucci-c4,

show the 2nd staff line C clef) petrucci-cb
petrucci style mensural F clef petrucci-f

+
petrucci style mensural G clef petrucci-g

+
historic style mensural C clef mensural-cl, mensural-c2,

mensural-c3, mensural-c4

e

historic style mensural F clef mensural-f
t
>—
historic style mensural G clef mensural-g
+
Editio Vaticana style do clef vaticana-dol, vaticana-do2,

vaticana-do3

T

Chapter 7: Instrument-specific notation 151

Editio Vaticana style fa clef vaticana-fal, vaticana-fa2

Editio Medicaea style do clef medicaea-dol, medicaea-do2,
medicaea-do3

Editio Medicaea style fa clef medicaea-fal, medicaea-fa2
—
historic style hufnagel do clef hufnagel-dol, hufnagel-do2,
hufnagel-do3
i —
historic style hufnagel fa clef hufnagel-fal, hufnagel-fa2
-

historic style hufnagel combined do/fa hufnagel-do-fa
clef
H

E==

Modern style means “as is typeset in contemporary editions of transcribed mensural music”.

Petrucci style means “inspired by printings published by the famous engraver Petrucci (1466-
1539)”.

Historic style means “as was typeset or written in historic editions (other than those of
Petrucci)”.

Editio XXX style means “as is/was printed in Editio XXX”.
Petrucci used C clefs with differently balanced left-side vertical beams, depending on which

staff line it is printed.

See also

In this manual: see Section 6.4.1 [Clef], page 76.

Bugs

The mensural g clef is mapped to the Petrucci g clef.

Chapter 7: Instrument-specific notation 152

7.7.5 Ancient flags

Use the flag-style property of grob Stem to select ancient flags. Besides the default flag
style, only the mensural style is supported

\override Stem #'flag-style = #'mensural

\override Stem #'thickness = #1.0

\override NoteHead #'style = #'mensural

\autoBeamOff

c'8 d'8 e'8 £'8 c'16 d'16 e'16 £'16 c'32 d'32 e'32 £'32 s8
c''8d''8e''8 £''8 c''16d''16 e''16 £''16 c''32 d''32 e''32 £''32

Note that the innermost flare of each mensural flag always is vertically aligned with a staff
line.

There is no particular flag style for neo-mensural notation. Hence, when typesetting the
incipit of a transcribed piece of mensural music, the default flag style should be used. There are
no flags in Gregorian Chant notation.

Bugs

The attachment of ancient flags to stems is slightly off due to a change in early 2.3.x.
Vertically aligning each flag with a staff line assumes that stems always end either exactly

on or exactly in the middle between two staff lines. This may not always be true when using

advanced layout features of classical notation (which however are typically out of scope for
mensural notation).

7.7.6 Ancient time signatures

There is limited support for mensural time signatures. The glyphs are hard-wired to particular
time fractions. In other words, to get a particular mensural signature glyph with the \time n/m
command, n and m have to be chosen according to the following table

C (O O c
\time 4/4 \time 2/2 \time 6/4 \time 6/8
@) 0] © (0)
\time 3/2 \time 3/4 \time 9/4 \time 9/8
9 D

\time 4/8 \time 2/4

Chapter 7: Instrument-specific notation 153

Use the style property of grob TimeSignature to select ancient time signatures. Supported
styles are neomensural and mensural. The above table uses the neomensural style. This style
is appropriate for the incipit of transcriptions of mensural pieces. The mensural style mimics
the look of historical printings of the 16th century.

The following examples show the differences in style,

default numbered mensural neomensural

7 ()
A (D7

a a@)
A\ 3 \L

D

G

-©- -©- ©- ©-

single-digit

[)]
A

P

See also

This manual: Section 6.4.3 [Time signature|, page 78 gives a general introduction to the use of
time signatures.

Bugs

Ratios of note durations do not change with the time signature. For example, the ratio of 1
brevis = 3 semibrevis (tempus perfectum) must be made by hand, by setting

breveTP = #(ly:make-duration -1 0 3 2)

{ c\breveTP f1 }
This sets breveTP to 3/2 times 2 = 3 times a whole note.

The 01d6/8alt symbol (an alternate symbol for 6/8) is not addressable with \time. Use a
\markup instead

7.7.7 Ancient articulations

In addition to the standard articulation signs described in section Section 6.6.1 [Articulations],
page 94, articulation signs for ancient notation are provided. These are specifically designed for
use with notation in Editio Vaticana style.

\include "gregorian-init.ly"
\score {
\new VaticanaVoice {

\override TextScript #'font-family = #'typewriter
\override TextScript #'font-shape = #'upright
\override Script #'padding = #-0.1
a\ictus_"ictus" \break
a\circulus_"circulus" \break
a\semicirculus_"semicirculus" \break
a\accentus_"accentus" \break
\[a_"episem" \episemInitium \pes b \flexa a b \episemFinis \flexa a \]

Chapter 7: Instrument-specific notation 154

B ——
ictamdénteslus

a
;Mi
episem

Bugs
Some articulations are vertically placed too closely to the correpsonding note heads.

The episem line is not displayed in many cases. If it is displayed, the right end of the episem
line is often too far to the right.

7.7.8 Custodes

A custos (plural: custodes; Latin word for ‘guard’) is a symbol that appears at the end of a
staff. It anticipates the pitch of the first note(s) of the following line thus helping the performer
to manage line breaks during performance.

Custodes were frequently used in music notation until the 17th century. Nowadays, they
have survived only in a few particular forms of musical notation such as contemporary editions
of Gregorian chant like the editio vaticana. There are different custos glyphs used in different
flavors of notational style.

For typesetting custodes, just put a Custos_engraver into the Staff context when declaring
the \layout block, as shown in the following example

\layout {
\context {
\Staff
\consists Custos_engraver
Custos \override #'style = #'mensural
b
b

The result looks like this

o)
:ﬁﬁo::

The custos glyph is selected by the style property. The styles supported are vaticana,
medicaea, hufnagel, and mensural. They are demonstrated in the following fragment

vaticanamedicaeahufnagelmensural
{ i v w

Chapter 7: Instrument-specific notation 155

See also
Program reference: Custos.

Examples: ‘input/regression/custos.ly’.

7.7.9 Divisiones

A divisio (plural: divisiones; Latin word for ‘division’) is a staff context symbol that is used to
structure Gregorian music into phrases and sections. The musical meaning of divisio minima,
divisio maior, and divisio mazrima can be characterized as short, medium, and long pause,
somewhat like the breathmarks from Section 6.6.4 [Breath marks|, page 100. The finalis sign not
only marks the end of a chant, but is also frequently used within a single antiphonal /responsorial
chant to mark the end of each section.

To use divisiones, include the file ‘gregorian-init.1ly’. It contains definitions that you can
apply by just inserting \divisioMinima, \divisioMaior, \divisioMaxima, and \finalis at
proper places in the input. Some editions use virgula or caesura instead of divisio minima.
Therefore, ‘gregorian-init.1ly’ also defines \virgula and \caesura

divisio minima divisio maior divisio maxima

finalis virgula caesura

N
-~

Predefined commands

\virgula, \caesura, \divisioMinima, \divisioMaior, \divisioMaxima, \finalis.

See also
In this manual: Section 6.6.4 [Breath marks]|, page 100.
Program reference: BreathingSign.

Examples: ‘input/test/divisiones.ly’.

7.7.10 Ligatures

A ligature is a graphical symbol that represents at least two distinct notes. Ligatures originally
appeared in the manuscripts of Gregorian chant notation to denote ascending or descending
sequences of notes.

Ligatures are entered by enclosing them in \[and \]. Some ligature styles may need addi-
tional input syntax specific for this particular type of ligature. By default, the LigatureBracket
engraver just puts a square bracket above the ligature

\transpose c c' {
\[gcafd \]
agt
\[efag)\l]

}

Chapter 7: Instrument-specific notation 156

n T 1 1
@" e | 2 | |
[y < ' e

To select a specific style of ligatures, a proper ligature engraver has to be added to the Voice
context, as explained in the following subsections. Only white mensural ligatures are supported
with certain limitations.

Bugs

Ligatures need special spacing that has not yet been implemented. As a result, there is too
much space between ligatures most of the time, and line breaking often is unsatisfactory. Also,
lyrics do not correctly align with ligatures.

Accidentals must not be printed within a ligature, but instead need to be collected and
printed in front of it.

The syntax still uses the deprecated infix style \[music expr \]. For consistency reasons, it
will eventually be changed to postfix stylenote\[... note\]. Alternatively, the file ‘gregorian
-init.ly’ can be included; it provides a scheme function

\ligature music expr

with the same effect and is believed to be stable.

7.7.10.1 White mensural ligatures
There is limited support for white mensural ligatures.

To engrave white mensural ligatures, in the layout block put the Mensural_ligature_
engraver into the Voice context, and remove the Ligature_bracket_engraver, like this

\layout {
\context {
\Voice
\remove Ligature_bracket_engraver
\consists Mensural_ligature_engraver

}
}

There is no additional input language to describe the shape of a white mensural ligature.
The shape is rather determined solely from the pitch and duration of the enclosed notes. While
this approach may take a new user a while to get accustomed to, it has the great advantage
that the full musical information of the ligature is known internally. This is not only required
for correct MIDI output, but also allows for automatic transcription of the ligatures.

For example,

\set Score.timing = ##f

\set Score.defaultBarType = "empty"

\override NoteHead #'style = #'neomensural

\override Staff.TimeSignature #'style = #'neomensural
\clef "petrucci-g"

\[c'\maxima g \]

\[d\longa c\breve f e d \]

\[c¢'\maxima d'\longa \]

\[e'l a g\breve \]

<P
M
1
I,
/i

= TS I

Chapter 7: Instrument-specific notation 157

Without replacing Ligature_bracket_engraver with Mensural_ligature_engraver, the
same music transcribes to the following

QD
)
|
|
I

Bugs

Horizontal spacing is poor.

7.7.10.2 Gregorian square neumes ligatures

There is limited support for Gregorian square neumes notation (following the style of the Editio
Vaticana). Core ligatures can already be typeset, but essential issues for serious typesetting are
still lacking, such as (among others) horizontal alignment of multiple ligatures, lyrics alignment
and proper handling of accidentals.

The following table contains the extended neumes table of the 2nd volume of the Antiphonale
Romanum (Liber Hymnarius), published 1983 by the monks of Solesmes.

Neuma aut Figurae Figurae Figurae
Neumarum Elementa Rectae Liquescentes Liquescentes
Auctae Deminutae

1. Punctum

ab cde f

n ¢ yoa .

2. Virga

3. Apostropha vel Stropha

4. Oriscus

Chapter 7: Instrument-specific notation 158

5. Clivis vel Flexa

k I m n
A NN :
6. Podatus vel Pes
(0) P q r
- Ny v
7. Pes Quassus
S t
! -
8. Quilisma Pes
u v
. iy
9. Podatus Initio Debilis
A%\% X
iy D
10. Torculus
y Z A
o o o
11. Torculus Initio Debilis
B C D
A 4" 3
12. Porrectus
E F G

Chapter 7: Instrument-specific notation 159

13. Climacus

H I J
Aoy Aoy %o,
14. Scandicus
K L M

15. Salicus

16. Trigonus

AN

Unlike most other neumes notation systems, the input language for neumes does not reflect
the typographical appearance, but is designed to focus on musical meaning. For example, \[a
\pes b \flexa g \] produces a Torculus consisting of three Punctum heads, while \[a \flexa
g \pes b \] produces a Porrectus with a curved flexa shape and only a single Punctum head.
There is no command to explicitly typeset the curved flexa shape; the decision of when to typeset
a curved flexa shape is based on the musical input. The idea of this approach is to separate the
musical aspects of the input from the notation style of the output. This way, the same input
can be reused to typeset the same music in a different style of Gregorian chant notation.

The following table shows the code fragments that produce the ligatures in the above neumes
table. The letter in the first column in each line of the below table indicates to which ligature in
the above table it refers. The second column gives the name of the ligature. The third column
shows the code fragment that produces this ligature, using g, a, and b as example pitches.

Name Input Language

a Punctum \[b\]

b Punctum Inclinatum \[\inclinatum b \]

¢ Punctum Auctum \[\auctum \ascendens b \]
Ascendens

d Punctum Auctum \ [\auctum \descendens b \]
Descendens

e Punctum Inclinatum \[\inclinatum \auctum b \]
Auctum

f Punctum Inclinatum \[\inclinatum \deminutum b \]

Parvum

Chapter 7: Instrument-specific notation

Virga

Stropha
Stropha Aucta
Oriscus

Clivis vel Flexa

Clivis Aucta
Descendens
Clivis Aucta
Ascendens
Cephalicus

Podatus vel Pes

Pes Auctus
Descendens
Pes Auctus
Ascendens
Epiphonus

Pes Quassus

Pes Quassus
Auctus Descendens

Quilisma Pes

Quilisma Pes
Auctus Descendens
Pes Initio Debilis

Pes Auctus Descendens
Initio Debilis

Torculus

Torculus Auctus
Descendens

Torculus Deminutus

Torculus Initio Debilis

Torculus Auctus

Descendens Initio Debilis

Torculus Deminutus
Initio Debilis
Porrectus

160

\[\virga b \]

\[\stropha b \]

\[\stropha \auctum b \]

\[\oriscus b \]

\[b \flexa g \]

\[b \flexa \auctum \descendens g \]

\[b \flexa \auctum \ascendens g \]

\[b \flexa \deminutum g \]

\[g \pes b \]

\[g \pes \auctum \descendens b \]

\[g \pes \auctum \ascendens b \]

\[g \pes \deminutum b \]

\[\oriscus g \pes \virga b \]

\[\oriscus g \pes \auctum \descendens b \]
\[\quilisma g \pes b \]

\[\quilisma g \pes \auctum \descendens b \]
\ [\deminutum g \pes b \]

\[\deminutum g \pes \auctum \descendens b \]
\[a \pes b \flexa g \]

\[a \pes b \flexa \auctum \descendens g \]
\[a \pes b \flexa \deminutum g \]

\[\deminutum a \pes b \flexa g \]

\[\deminutum a \pes b \flexa \auctum \descendens g \]

\[\deminutum a \pes b \flexa \deminutum g \]

\[a \flexa g \pes b \]

Chapter 7: Instrument-specific notation 161

F Porrectus Auctus \[a \flexa g \pes \auctum \descendens b \]
Descendens

G Porrectus Deminutus \[a \flexa g \pes \deminutum b \]

H Climacus \[\virga b \inclinatum a \inclinatum g \]

I Climacus Auctus \[\virga b \inclinatum a \inclinatum \auctum g \]

J Climacus Deminutus \[\virga b \inclinatum a \inclinatum \deminutum g \]

K Scandicus \[g \pes a \virga b \]

L Scandicus Auctus \[g \pes a \pes \auctum \descendens b \]
Descendens

M Scandicus Deminutus \[g \pes a \pes \deminutum b \]

N Salicus \[g \oriscus a \pes \virga b \]

O Salicus Auctus Descendens \[g \oriscus a \pes \auctum \descendens b \]

P Trigonus \[\stropha b \stropha b \stropha a \]

The ligatures listed above mainly serve as a limited, but still representative pool of Gregorian
ligature examples. Virtually, within the ligature delimiters \[and \], any number of heads
may be accumulated to form a single ligature, and head prefixes like \pes, \flexa, \virga,
\inclinatum, etc. may be mixed in as desired. The use of the set of rules that underlies the
construction of the ligatures in the above table is accordingly extrapolated. This way, infinitely
many different ligatures can be created.

Augmentum dots, also called morae, are added with the music function \augmentum. Note
that \augmentum is implemented as a unary music function rather than as head prefix. It applies
to the immediately following music expression only. That is, \augmentum \virga c will have
no visible effect. Instead, say \virga \augmentum c or \augmentum {\virga c}. Also note that
you can say \augmentum {a g} as a shortcut for \augmentum a \augmentum g.

\include "gregorian-init.ly"
\score {
\new VaticanaVoice {
\[\augmentum a \flexa \augmentum g \]
\augmentum g

Predefined commands

The following head prefixes are supported

\virga, \stropha, \inclinatum, \auctum, \descendens, \ascendens, \oriscus,
\quilisma, \deminutum, \cavum, \linea.

Head prefixes can be accumulated, though restrictions apply. For example, either
\descendens or \ascendens can be applied to a head, but not both to the same head.

Chapter 7: Instrument-specific notation 162

Two adjacent heads can be tied together with the \pes and \flexa infix commands for a
rising and falling line of melody, respectively.

Use the unary music function \augmentum to add augmentum dots.

Bugs

When an \augmentum dot appears at the end of the last staff within a ligature, it is sometimes
vertically placed wrong. As a workaround, add an additional skip note (e.g. s8) as last note of
the staff.

\augmentum should be implemented as a head prefix rather than a unary music function,
such that \augmentum can be intermixed with head prefixes in arbitrary order.

7.7.11 Gregorian Chant contexts

The predefined VaticanaVoiceContext and VaticanaStaffContext can be used to engrave
a piece of Gregorian Chant in the style of the Editio Vaticana. These contexts initialize all
relevant context properties and grob properties to proper values, so you can immediately go
ahead entering the chant, as the following excerpt demonstrates
\include "gregorian-init.ly"
\score {
<<
\new VaticanaVoice = "cantus" {
\[c'\melisma c' \flexa a \]
\[a \flexa \deminutum g\melismaEnd \]
f \divisioMinima
\[f\melisma \pes a c' c' \pes d'\melismaEnd \]
c' \divisioMinima \break
\[c'\melisma c' \flexa a \]
\[a \flexa \deminutum g\melismaEnd \] f \divisioMinima
}
\new Lyrics \lyricsto "cantus" {
San- ctus, San- ctus, San- ctus

+
>>
3
- — —
‘ T — ;'H —

San- ctus, San- ctus,

San- ctus

7.7.12 Mensural contexts

The predefined MensuralVoiceContext and MensuralStaffContext can be used to engrave
a piece in mensural style. These contexts initialize all relevant context properties and grob
properties to proper values, so you can immediately go ahead entering the chant, as the following
excerpt demonstrates

Chapter 7: Instrument-specific notation 163

\score {
<<
\new MensuralVoice = "discantus" \transpose c c' {
\override Score.BarNumber #'transparent = ##t {

c'1\melisma bes a g\melismaEnd
f\breve
\[fi\melisma a c'\breve d'\melismaEnd \]
c'\longa
c'\breve\melisma al gl\melismaEnd
fis\longa~\signumcongruentiae

}
}
\new Lyrics \lyricsto "discantus" {
San -- ctus, San -- ctus, San -- ctus
}
>>
}
fal
% . 1
i M a— \) Y "
e C ¥ a4 \) a
O M Vv =] 3
San - - ctus,
fal
‘x 74__% 3
6
San - - - - ctus,
n S‘
%
i —
L S— \) 3
v M VvV X
San - - ctus

7.7.13 Musica ficta accidentals

In European music from before about 1600, singers were often expected to chromatically alter
notes at their own initiative. This is called “Musica Ficta”. In modern transcriptions, these
accidentals are usually printed over the note.

Support for such suggested accidentals is included, and can be switched on by setting
suggestAccidentals to true.
fis gis
\set suggestAccidentals = ##t
ais bis

0 R

Chapter 7: Instrument-specific notation 164

See also

Program reference: Accidental_engraver engraver and the AccidentalSuggestion object.

7.7.14 Figured bass

LilyPond has support for figured bass
<<
\new Voice { \clef bass dis4 c d ais g fis}
\new FiguredBass \figuremode {
<6 > <T7\+ >8 <6+ [_!]>
< 6 >4 <6 5 [3+] >
< _>4 <6 5/>4

6 +7#?6 6

6
53 &
[#3l

The support for figured bass consists of two parts: there is an input mode, introduced
by \figuremode, where you can enter bass figures as numbers, and there is a context called
FiguredBass that takes care of making BassFigure objects.

In figures input mode, a group of bass figures is delimited by < and >. The duration is entered
after the >

<4 6>
4
6
Accidentals are added when you append -, !, and + to the numbers. A plus sign is added

when you append \+, and diminished fifths and sevenths can be obtained with 5/ and 7/.
<4- 6+ T!> <B++> <3--> <7/> r <6\+ 5/>

bAxSH3 F +6
46]
b7

Spaces may be inserted by using _. Brackets are introduced with [and]. You can also
include text strings and text markups, see Section 8.1.6 [Overview of text markup commands],
page 174.

< [4 6] 8 [_! 12] > < 5 \markup { \number 6 \super (1) } >

4 5
[g] 6(1)

i

Chapter 7: Instrument-specific notation 165

It is also possible to use continuation lines for repeated figures,
<<
\new Staff {
\clef bass
c4 cc
}
\figures {
\set useBassFigureExtenders = ##t
<4 6> <3 6> <3 7>

In this case, the extender lines always replace existing figures.

The FiguredBass context doesn’t pay attention to the actual bass line. As a consequence,
you may have to insert extra figures to get extender lines below all notes, and you may have to
add \! to avoid getting an extender line, e.g.

Sot

)—e) - o o

Z .

6 5 6 6
b4 b5

When using continuation lines, common figures are always put in the same vertical position.
When this is unwanted, you can insert a rest with r. The rest will clear any previous alignment.
For example, you can write

<4 6>8 r8
instead of
<4 6>4

Accidentals and plus signs can appear before or after the numbers, depending on the
figuredBassAlterationDirection and figuredBassPlusDirection properties

+6 45 6 *6 5% 6 6+ 5¢ 6 6+45 6
b4 4 4 b4

Although the support for figured bass may superficially resemble chord support, it is much
simpler. The \figuremode mode simply stores the numbers and FiguredBass context prints
them as entered. There is no conversion to pitches and no realizations of the bass are played in
the MIDI file.

Internally, the code produces markup texts. You can use any of the markup text properties to
override formatting. For example, the vertical spacing of the figures may be set with baseline-
skip.

Chapter 7: Instrument-specific notation 166

Figured bass can also be added to Staff contexts directly. In this case, their vertical position
is adjusted automatically.

6 4—
10 6—
f 4 =)
: *
ANV |
U I
Bugs

When using figured bass above the staff with extender lines and implicitBassFigures the lines
may become swapped around. Maintaining order consistently will be impossible when multiple
figures have overlapping extender lines. To avoid this problem, plese use stacking-dir on
BassFigureAlignment.

See also

Program reference: NewBassFigure, BassFigureAlignment, BassFigureline,
BassFigureBracket, and BassFigureContinuation objects and FiguredBass con-
text.

7.8 Other instrument specific notation

This section includes extra information for writing for instruments.

7.8.1 Artificial harmonics (strings)

Artificial harmonics are notated with a different notehead style. They are entered by marking
the harmonic pitch with \harmonic.

<c g'\harmonic>4

Chapter 8: Advanced notation 167

8 Advanced notation

This chapter deals with rarely-used and advanced notation.

8.1 Text

This section explains how to include text (with various formatting) in your scores.

To write accented and special text (such as characters from other languages), simply insert
the characters directly into the lilypond file. The file must be saved as UTF-8. For more
information, see Section 10.1.7 [Text encoding], page 238.

8.1.1 Text scripts

It is possible to place arbitrary strings of text or Section 8.1.4 [Text markup|, page 170 above
or below notes by using a string c™"text". By default, these indications do not influence the
note spacing, but by using the command \fatText, the widths will be taken into account

c4""longtext" \fatText c4_"longlongtext" c4

N longtext
7\

)" 4
r £)

v Y W]

ANV

[Y) o & P

longlongtext

—~

To prevent text from influencing spacing, use \emptyText.
More complex formatting may also be added to a note by using the markup command,

c'4"\markup { bla \bold bla }

bla bla

The \markup is described in more detail in Section 8.1.4 [Text markup], page 170.

Predefined commands
\fatText, \emptyText.

Commonly tweaked properties

Checking to make sure that text scripts and lyrics are within the margins is a relatively large
computational task. To speed up processing, lilypond does not perform such calculations by
default; to enable it, use

\override Score.PaperColumn #'keep-inside-line = #it

See also
In this manual: Section 8.1.4 [Text markup], page 170.

Program reference: TextScript.

Chapter 8: Advanced notation 168

8.1.2 Text spanners

Some performance indications, e.g., rallentando or accelerando, are written as text and are
extended over many measures with dotted lines. Such texts are created using text spanners;
attach \startTextSpan and \stopTextSpan to the first and last notes of the spanner.

The string to be printed, as well as the style, is set through object properties

cl

\textSpannerDown

\override TextSpanner #'edge-text
c2\startTextSpan b c\stopTextSpan
\break

\textSpannerUp

\override TextSpanner #'edge-text = #(cons (markup #:italic "rit") "")
c2\startTextSpan b c\stopTextSpan

#l ("rall n . n ll)

)

)

©- < Z =
rall- - - ®
44 rit- - -
)" 4
7\
[[an) | |
AN V4 | |
() < z < =

Predefined commands

\textSpannerUp, \textSpannerDown, \textSpannerNeutral.

Commonly tweaked properties
To print a solid line, use

\override TextSpanner #'dash-fraction = #'()

See also
Program reference: TextSpanner.

Examples: ‘input/regression/text-spanner.ly’.

8.1.3 Text marks

The \mark command is primarily used for Section 8.2.3 [Rehearsal marks], page 187, but it can
also be used to put signs like coda, segno, and fermata on a bar line. Use \markup to access the
appropriate symbol (symbols are listed in Section C.4 [The Feta font], page 316)

cl \mark \markup { \musicglyph #"scripts.ufermata" }
cl

)

O

o
N (@
N
v

G e

Chapter 8: Advanced notation 169

\mark is only typeset above the top stave of the score. If you specify the \mark command at a
bar line, the resulting mark is placed above the bar line. If you specify it in the middle of a bar,
the resulting mark is positioned between notes. If it is specified before the beginning of a score
line, it is placed before the first note of the line. Finally, if the mark occurs at a line break, the
mark will be printed at the beginning of the next line. If there is no next line, then the mark
will not be printed at all.

Commonly tweaked properties
To print the mark at the end of the current line, use
\override Score.RehearsalMark
#'break-visibility = #begin-of-line-invisible
\mark is often useful for adding text to the end of bar. In such cases, changing the #'self-
alignment is very useful
\override Score.RehearsalMark
#'break-visibility = #begin-of-line-invisible
clcccdccc

\once \override Score.RehearsalMark #'self-alignment-X = #right
\mark "D.S. al Fine "

D.S. al Fine

G e
—

Text marks may be aligned with notation objects other than bar lines,

\relative {

cl
\key cis \major
\clef alto

\override Score.RehearsalMark #'break-align-symbol
\mark "on key"

cis

\key ces \major

\override Score.RehearsalMark #'break-align-symbol
\clef treble

\mark "on clef"

ces

\override Score.RehearsalMark #'break-align-symbol
\key d \minor

\clef tenor

\time 3/4

\mark "on time"

#'key-signature

#'clef

#'time-signature

P>
-
N | O
D
==
=X
__xx.
|
NG
J:E
Ml s
J:E:
Bl s
<1
s
N
B
L
uil
H
C§€9
o
Lt
o
o | o

J
¢
¢

Chapter 8: Advanced notation 170

on time

)y | —= ~
) D e ~F
ey

Although text marks are normally only printed above the topmost staff, you may alter this
to print them on every staff,

{
\new Score \with {
\remove "Mark_engraver"
}
<<
\new Staff \with {
\consists "Mark_engraver"
}
{ ¢''1 \mark "foo" c'' }
\new Staff \with {
\consists "Mark_engraver"
}
{ ¢'1 \mark "foo" c' }
>>
}
N foo
)\I o O O
[[YA O
ANV
o
f foo
)’ 4
7\ r)
|
SV
eJ © o
See also

Program reference: RehearsalMark.

8.1.4 Text markup

Use \markup to typeset text. Commands are entered with the backslash \. To enter \ and #,
use double quotation marks.

ci"\markup { hello }

cl_\markup { hi there }

c1”\markup { hi \bold there, is \italic {anyone home?} }
cl_\markup { "\special {weird} #characters" }

hello hi there, is anyone home?

N (o

= o =S =S
hi there \special {weird} #characters

Gz e
-

See Section 8.1.6 [Overview of text markup commands], page 174 for a list of all commands.

\markup is primarily used for TextScripts, but it can also be used anywhere text is called
in lilypond

Chapter 8: Advanced notation 171

\header{ title = \markup{ \bold { foo \italic { bar! } } } }
\score{
\relative c'' {
\override Score.RehearsalMark
#'break-visibility = #begin-of-line-invisible
\override Score.RehearsalMark #'self-alignment-X = #right

\set Staff.instrumentName = \markup{ \column{ Alto solo } }
c2"\markup{ don't be \flat }
\override TextSpanner #'edge-text = #(cons (markup #:italic "rit") "")

b2\startTextSpan
a2\mark \markup{ \large \bold Fine }
r2\stopTextSpan
\bar nlln
}
\addlyrics { bar, foo \markup{ \italic bar! } }
}
foo bar!
f don't be, rit-z - - - - - - - - Fine -
Alto X o 7 P I -
'(ﬂ \ 7 [(7]
solo o |
bar, foo bar!

A \markup command can also be placed on its own, away from any \score block, see Sec-
tion 10.1.4 [Multiple scores in a book], page 236.

\markup{ Here is some text. }

Chapter 8: Advanced notation 172

Here is some text.

Chapter 8: Advanced notation 173

The markup in the example demonstrates font switching commands. The command \bold
and \italic apply to the first following word only; to apply a command to more than one word,
enclose the words with braces,

\markup { \bold { hi there } }
For clarity, you can also do this for single arguments, e.g.,
\markup { is \italic { anyone } home }

In markup mode you can compose expressions, similar to mathematical expressions, XML
documents, and music expressions. You can stack expressions grouped vertically with the com-
mand \column. Similarly, \center-align aligns texts by their center lines:

c1”\markup { \column { a bbbb \line { ¢ d } } }

c1”™\markup { \center-align { a bbbb c¢ } }
c1”\markup { \line { a b c } }

a a
bbbbbbbb
cd c abec

N (o

g et
-

Lists with no previous command are not kept distinct. The expression
\center-align { { ab} {cd?} }

is equivalent to

\center-align { a b ¢ d }

To keep lists of words distinct, please use quotes " or the \1ine command

\fatText

c4"\markup{ \center-align { on three lines } }
c4"\markup{ \center-align { "all one line" } }
c4"\markup{ \center-align { { on three lines } } }
c4"\markup{ \center-align { \line { on one line } } }

on on
three three
0 lines all one line lines on one line
X r £}
o
SV
¢ - - - -

Markups can be stored in variables and these variables may be attached to notes, like

allegro = \markup { \bold \large { Allegro } }
{ a"\allegro b c d }

Some objects have alignment procedures of their own, which cancel out any effects of align-
ments applied to their markup arguments as a whole. For example, the RehearsalMark is
horizontally centered, so using \mark \markup { \left-align .. } has no effect.

In addition, vertical placement is performed after creating the text markup object. If you
wish to move an entire piece of markup, you need to use the #’padding property or create an
"anchor" point inside the markup (generally with \hspace #0).

Chapter 8: Advanced notation 174

\fatText

c'4"\markup{ \raise #5 "not raised" }

\once \override TextScript #'padding = #3
c'4"\markup{ raised }

c'4"\markup{ \hspace #0 \raise #1.5 raised }

raised
raised g
o) not raised®
Z
SV |
U |

Some situations (such as dynamic marks) have preset font-related properties. If you are
creating text in such situations, it is advisable to cancel those properties with normal-text.
See Section 8.1.6 [Overview of text markup commands], page 174 for more details.

See also
This manual: Section 8.1.6 [Overview of text markup commands|, page 174.
Program reference: TextScript.

Init files: ‘scm/new-markup.scm’.

Bugs
Kerning or generation of ligatures is only done when the TEX backend is used. In this case,
LilyPond does not account for them so texts will be spaced slightly too wide.

Syntax errors for markup mode are confusing.

8.1.5 Nested scores
It is possible to nest music inside markups, by adding a \score block to a markup expression.
Such a score must contain a \layout block.

\relative {
c4 d"\markup {

\score {
\relative { c4 d e f }
\layout { }
}
}
e f
}
)
 —)
'(\\ A U
N O e
A f
'(\\ \ U7 |
I

8.1.6 Overview of text markup commands

The following commands can all be used inside \markup { }.

Chapter 8: Advanced notation 175

\arrow-head axis (integer) direction (direction) filled (boolean)
produce an arrow head in specified direction and axis. Use the filled head if filled is
specified.

\beam width (number) slope (number) thickness (number)
Create a beam with the specified parameters.

\bigger arg (markup)
Increase the font size relative to current setting

\bold arg (markup)
Switch to bold font-series

\box arg (markup)
Draw a box round arg. Looks at thickness, box-padding and font-size properties
to determine line thickness and padding around the markup.

\bracket arg (markup)
Draw vertical brackets around arg.

\bracketed-y-column indices (list) args (list of markups)
Make a column of the markups in args, putting brackets around the elements marked
in indices, which is a list of numbers.

\caps arg (markup)
\center-align args (list of markups)
Put args in a centered column.

\char num (integer)
Produce a single character, e.g. \char #65 produces the letter *A’.

\circle arg (markup)
Draw a circle around arg. Use thickness, circle-padding and font-size prop-
erties to determine line thickness and padding around the markup.

\column args (list of markups)
Stack the markups in args vertically. The property baseline-skip determines the
space between each markup in args.

\combine ml (markup) m2 (markup)
Print two markups on top of each other.

\dir-column args (list of markups)
Make a column of args, going up or down, depending on the setting of the
#'direction layout property.

\doubleflat
Draw a double flat symbol.

\doublesharp
Draw a double sharp symbol.

\draw-circle radius (number) thickness (number) fill (boolean)
A circle of radius radius, thickness thickness and optionally filled.

\dynamic arg (markup)
Use the dynamic font. This font only contains s, f, m, z, p, and r. When producing
phrases, like “piu f”, the normal words (like “piti”) should be done in a different
font. The recommend font for this is bold and italic

\epsfile axis (number) size (number) file-name (string)
Inline an EPS image. The image is scaled along axis to size.

Chapter 8: Advanced notation 176

\fill-line markups (list of markups)
Put markups in a horizontal line of width Iine-width. = The markups are
spaced /flushed to fill the entire line. If there are no arguments, return an empty
stencil.

\filled-box xext (pair of numbers) yext (pair of numbers) blot (number)
Draw a box with rounded corners of dimensions xext and yext. For example,
\filled-box #'(-.3 . 1.8) #'(-.3 . 1.8) #0
create a box extending horizontally from -0.3 to 1.8 and vertically from -0.3 up to

1.8, with corners formed from a circle of diameter 0 (ie sharp corners).

\finger arg (markup)

Set the argument as small numbers.
\flat

Draw a flat symbol.

\fontCaps arg (markup)
Set font-shape to caps.

\fontsize increment (number) arg (markup)
Add increment to the font-size. Adjust baseline skip accordingly.

\fraction argl (markup) arg2 (markup)
Make a fraction of two markups.

\fret-diagram definition-string (string)
Example
\markup \fret-diagram #"s:0.75;6-x;5-x;4-0;3-2;2-3;1-2;"
for fret spacing 3/4 of staff space, D chord diagram
Syntax rules for definition-string:
— Diagram items are separated by semicolons.
— Possible items:
e s:number — set the fret spacing of the diagram (in staff spaces). Default 1
e t:number — set the line thickness (in staff spaces). Default 0.05
e h:mumber — set the height of the diagram in frets. Default 4
e w:number — set the width of the diagram in strings. Default 6

e fnumber — set fingering label type (0 = none, 1 = in circle on string, 2 =
below string) Default 0

e d:number — set radius of dot, in terms of fret spacing. Default 0.25

e p:number — set the position of the dot in the fret space. 0.5 is centered; 1
is on lower fret bar, 0 is on upper fret bar. Default 0.6

e c:stringl-string2-fret — include a barre mark from stringl to string2 on fret

e string-fret — place a dot on string at fret. If fret is o, string is identified as
open. If fret is x, string is identified as muted.

e string-fret-fingering — place a dot on string at fret, and label with fingering
as defined by f: code.

— Note: There is no limit to the number of fret indications per string.

\fret-diagram-terse definition-string (string)
Make a fret diagram markup using terse string-based syntax.

Example

Chapter 8: Advanced notation 177

\markup \fret-diagram-terse #"x;x;0;2;3;2;"

for a D chord diagram.

Syntax rules for definition-string:

Strings are terminated by semicolons; the number of semicolons is the number
of strings in the diagram.

Mute strings are indicated by "x".
Open strings are indicated by "o".
A number indicates a fret indication at that fret.

If there are multiple fret indicators desired on a string, they should be separated
by spaces.

Fingerings are given by following the fret number with a "-", followed by the
finger indicator, e.g. 3-2 for playing the third fret with the second finger.
Where a barre indicator is desired, follow the fret (or fingering) symbol with
"-(" to start a barre and "-)" to end the barre.

\fret-diagram-verbose marking-list (list)
Make a fret diagram containing the symbols indicated in marking-list

For example,

\markup \fret-diagram-verbose #'((mute 6) (mute 5) (open 4)
(place-fret 3 2) (place-fret 2 3) (place-fret 1 2))

will produce a standard D chord diagram without fingering indications.

Possible elements in marking-list:

(mute string-number)

Place a small 'x’” at the top of string string-number

(open string-number)

Place a small '0’ at the top of string string-number

(barre start-string end-string fret-number)

Place a barre indicator (much like a tie) from string start-stringto string
end-string at fret fret-number

(place-fret string-number fret-number finger-value)

Place a fret playing indication on string string-number at fret fret-
number with an optional fingering label finger-value. By default, the
fret playing indicator is a solid dot. This can be changed by setting
the value of the variable dot-color. If the finger part of the place-fret
element is present, finger-value will be displayed according to the set-
ting of the variable finger-code. There is no limit to the number of fret
indications per string.

\fromproperty symbol (symbol)
Read the symbol from property settings, and produce a stencil from the markup
contained within. If symbol is not defined, it returns an empty markup

\general-align axis (integer) dir (number) arg (markup)
Align arg in axis direction to the dir side.

\halign dir (number) arg (markup)
Set horizontal alignment. If dir is -1, then it is left-aligned, while +1 is right. Values
in between interpolate alignment accordingly.

\hbracket arg (markup)
Draw horizontal brackets around arg.

Chapter 8: Advanced notation 178

\hcenter-in length (number) arg (markup)
Center arg horizontally within a box of extending length/2 to the left and right.

\hcenter arg (markup)
Align arg to its X center.

\hspace amount (number)
This produces a invisible object taking horizontal space.

\markup { A \hspace #2.0 B }

will put extra space between A and B, on top of the space that is normally inserted
before elements on a line.

\huge arg (markup)
Set font size to +2.

\italic arg (markup)
Use italic font-shape for arg.

\justify-field symbol (symbol)

\justify args (list of markups)
Like wordwrap, but with lines stretched to justify the margins. Use \override
#' (line-width . X) to set line-width, where X is the number of staff spaces.

\justify-string arg (string)
Justify a string. Paragraphs may be separated with double newlines

\large arg (markup)
Set font size to +1.

\left-align arg (markup)
Align arg on its left edge.

\line args (list of markups)
Put args in a horizontal line. The property word-space determines the space be-
tween each markup in args.

\lookup glyph-name (string)
Lookup a glyph by name.

\lower amount (number) arg (markup)
Lower arg, by the distance amount. A negative amount indicates raising, see also
\raise.

\magnify sz (number) arg (markup)
Set the font magnification for the its argument. In the following example, the middle
A will be 10% larger:

A \magnify #1.1 { A } A

Note: magnification only works if a font-name is explicitly selected. Use \fontsize
otherwise.

\markalphabet num (integer)
Make a markup letter for num. The letters start with A to Z and continues with
double letters.

\markletter num (integer)
Make a markup letter for num. The letters start with A to Z (skipping I), and
continues with double letters.

\medium arg (markup)
Switch to medium font-series (in contrast to bold).

Chapter 8: Advanced notation 179

\musicglyph glyph-name (string)
This is converted to a musical symbol, e.g. \musicglyph #"accidentals.O0" will
select the natural sign from the music font. See user manual, The Feta font for a
complete listing of the possible glyphs.

\natural

Draw a natural symbol.

\normal-size-sub arg (markup)
Set arg in subscript, in a normal font size.

\normal-size-super arg (markup)
Set arg in superscript with a normal font size.

\normal-text arg (markup)
Set all font related properties (except the size) to get the default normal text font,
no matter what font was used earlier.

\normalsize arg (markup)
Set font size to default.

\note-by-number log (number) dot-count (number) dir (number)
Construct a note symbol, with stem. By using fractional values for dir, you can
obtain longer or shorter stems.

\note duration (string) dir (number)
This produces a note with a stem pointing in dir direction, with the duration for the
note head type and augmentation dots. For example, \note #"4." #-0.75 creates
a dotted quarter note, with a shortened down stem.

\null

An empty markup with extents of a single point

\number arg (markup)
Set font family to number, which yields the font used for time signatures and finger-
ings. This font only contains numbers and some punctuation. It doesn’t have any
letters.

\on-the-fly procedure (symbol) arg (markup)
Apply the procedure markup command to arg. procedure should take a single
argument.

\override new-prop (pair) arg (markup)
Add the first argument in to the property list. Properties may be any sort of
property supported by font-interface and text-interface, for example

\override #'(font-family . married) "bla"

\pad-around amount (number) arg (markup)
Add padding amount all around arg.

\pad-markup padding (number) arg (markup)
Add space around a markup object.

\pad-to-box x-ext (pair of numbers) y-ext (pair of numbers) arg (markup)
Make arg take at least x-ext, y-ext space

\pad-x amount (number) arg (markup)
Add padding amount around arg in the X-direction.

Chapter 8: Advanced notation 180

\postscript str (string)

\put-adjac

This inserts str directly into the output as a PostScript command string. Due to
technicalities of the output backends, different scales should be used for the TEX
and PostScript backend, selected with -f.

For the TeX backend, the following string prints a rotated text

0 0 moveto /ecrml0 findfont

1.75 scalefont setfont 90 rotate (hello) show

The magical constant 1.75 scales from LilyPond units (staff spaces) to TeX dimen-
sions.

For the postscript backend, use the following

gsave /ecrml0 findfont
10.0 output-scale div
scalefont setfont 90 rotate (hello) show grestore

ent argl (markup) axis (integer) dir (direction) arg2 (markup)
Put arg2 next to argl, without moving argl.

\raise amount (number) arg (markup)

Raise arg, by the distance amount. A negative amount indicates lowering, see also
\lower.

c1™\markup { C \small \raise #1.0 \bold { "9/7+" }}

:é@h

[Y) ©

\right-ali

\roman arg

The argument to \raise is the vertical displacement amount, measured in (global)
staff spaces. \raise and \super raise objects in relation to their surrounding
markups.

If the text object itself is positioned above or below the staff, then \raise cannot be
used to move it, since the mechanism that positions it next to the staff cancels any
shift made with \raise. For vertical positioning, use the padding and/or extra-
offset properties.

gn arg (markup)
Align arg on its right edge.

(markup)
Set font family to roman.

\rotate ang (number) arg (markup)

Rotate object with ang degrees around its center.

\sans arg (markup)

Switch to the sans serif family

\score score (unknown)

\semiflat

\semisharp

Inline an image of music.

Draw a semiflat.

Draw a semi sharp symbol.

Chapter 8: Advanced notation 181

\sesquiflat
Draw a 3/2 flat symbol.

\sesquisharp

Draw a 3/2 sharp symbol.
\sharp

Draw a sharp symbol.
\simple str (string)

A simple text string; \markup { foo }is equivalent with \markup { \simple #"foo"
.

\slashed-digit num (integer)
A feta number, with slash. This is for use in the context of figured bass notation

\small arg (markup)
Set font size to -1.

\smallCaps text (markup)
Turn text, which should be a string, to small caps.
\markup \smallCaps "Text between double quotes"

\smaller arg (markup)
Decrease the font size relative to current setting

\stencil stil (unknown)
Stencil as markup

\strut

Create a box of the same height as the space in the current font.

\sub arg (markup)
Set arg in subscript.

\super arg (markup)
Raising and lowering texts can be done with \super and \sub:

c1™"\markup { E "=" mc \super "2" }
2
o E =mc
)’ 4
o t—
¢J ©

\teeny arg (markup)
Set font size to -3.

\text arg (markup)
Use a text font instead of music symbol or music alphabet font.

\tied-lyric str (string)
Like simple-markup, but use tie characters for ~ tilde symbols.

\tiny arg (markup)
Set font size to -2.

\translate offset (pair of numbers) arg (markup)
This translates an object. Its first argument is a cons of numbers

Chapter 8: Advanced notation 182

A \translate #(cons 2 -3) { BC } D

This moves ‘B C’ 2 spaces to the right, and 3 down, relative to its surroundings.
This command cannot be used to move isolated scripts vertically, for the same reason
that \raise cannot be used for that.

\translate-scaled offset (pair of numbers) arg (markup)
Translate arg by offset, scaling the offset by the font-size.

\transparent arg (markup)
Make the argument transparent

\triangle filled (boolean)
A triangle, filled or not

\typewriter arg (markup)
Use font-family typewriter for arg.

\upright arg (markup)
Set font shape to upright. This is the opposite of italic.

\vcenter arg (markup)
Align arg to its Y center.

\verbatim-file name (string)
Read the contents of a file, and include verbatimly

\whiteout arg (markup)
Provide a white underground for arg

\with-color color (list) arg (markup)
Draw arg in color specified by color

\with-dimensions x (pair of numbers) y (pair of numbers) arg (markup)
Set the dimensions of arg to x and y.

\with-url url (string) arg (markup)
Add a link to URL url around arg. This only works in the PDF backend.

\wordwrap-field symbol (symbol)

\wordwrap args (list of markups)
Simple wordwrap. Use \override #'(line-width . X) to set line-width, where X
is the number of staff spaces.

\wordwrap-string arg (string)
Wordwrap a string. Paragraphs may be separated with double newlines

8.1.7 Font selection

By setting the object properties described below, you can select a font from the preconfigured
font families. LilyPond has default support for the feta music fonts. Text fonts are selected
through Pango/FontConfig. The serif font defaults to New Century Schoolbook, the sans and
typewriter to whatever the Pango installation defaults to.

e font-encoding is a symbol that sets layout of the glyphs. This should only be set to select
different types of non-text fonts, e.g.

fetaBraces for piano staff braces, fetaMusic the standard music font, including ancient
glyphs, fetaDynamic for dynamic signs and fetaNumber for the number font.

e font-family is a symbol indicating the general class of the typeface. Supported are roman
(Computer Modern), sans, and typewriter.

Chapter 8: Advanced notation 183

e font-shape is a symbol indicating the shape of the font. There are typically several font
shapes available for each font family. Choices are italic, caps, and upright.

e font-series is a symbol indicating the series of the font. There are typically several font
series for each font family and shape. Choices are medium and bold.

Fonts selected in the way sketched above come from a predefined style sheet. If you want to
use a font from outside the style sheet, then set the font-name property,

{

\override Staff.TimeSignature #'font-name = #"Charter"
\override Staff.TimeSignature #'font-size = #2
\time 3/4
c'1l_\markup {
\override #'(font-name . "Vera Bold")
{ This text is in Vera Bold }
}
}
0
"4
£\
[Fan)
ANV
¢

-©-
This text is in Vera Bold

Any font can be used, as long as it is available to Pango/FontConfig. To get a full list of all
available fonts, run the command

lilypond -dshow-available-fonts blabla
(the last argument of the command can be anything, but has to be present).

The size of the font may be set with the font-size property. The resulting size is taken
relative to the text-font-size as defined in the \paper block.

It is also possible to change the default font family for the entire document. This is done by
calling the make-pango-font-tree from within the \paper block. The function takes names
for the font families to use for roman, sans serif and monospaced text. For example,

\paper {
myStaffSize = #20

#(define fonts
(make-pango-font-tree "Times New Roman"
"Nimbus Sans"
"Luxi Mono"
(/ myStaffSize 20)))

}
{
c¢'"\markup { roman: foo \sans bla \typewriter bar }
}
[} roman: foo bla bar
¢
[(oY W]

Chapter 8: Advanced notation 184

See also

Examples: ‘input/regression/font-family-override.ly’.

8.1.8 New dynamic marks

It is possible to print new dynamic marks or text that should be aligned with dynamics. Use
make-dynamic-script to create these marks. Note that the dynamic font only contains the
characters f,m,p,r,s and z.

Some situations (such as dynamic marks) have preset font-related properties. If you are
creating text in such situations, it is advisable to cancel those properties with normal-text.
See Section 8.1.6 [Overview of text markup commands|, page 174 for more details.

sfzp = #(make-dynamic-script "sfzp")
\relative c' {

c4 c c\sfzp c
}

N &1

P

o o O @

sfzp

It is also possible to print dynamics in round parenthesis or square brackets. These are often
used for adding editorial dynamics.

rndf = \markup{ \center-align {\line { \bold{\italic (}
\dynamic f \bold{\italic)} }} }

boxf = \markup{ \bracket { \dynamic f } }

{ ¢'1_\rndf c'1_\boxf }

r)
\ U

P

o O

f) If

8.2 Preparing parts

This section describes various notation that are useful for preparing individual parts.

8.2.1 Multi measure rests

Rests for one full measure (or many bars) are entered using ‘R’. It is specifically meant for full
bar rests and for entering parts: the rest can expand to fill a score with rests, or it can be printed
as a single multi-measure rest. This expansion is controlled by the property Score.skipBars. If
this is set to true, empty measures will not be expanded, and the appropriate number is added
automatically

\time 4/4 r1 | R1 | R1*2 \time 3/4 R2. \time 2/4 R2 \time 4/4
\set Score.skipBars = ##t R1*17 R1*4

=
- | N

q»

1

1

1

1
NN

1
e

1

»

G

Chapt

er 8: Advanced notation 185

The 1 in R1 is similar to the duration notation used for notes. Hence, for time signatures
other than 4/4, you must enter other durations. This can be done with augmentation dots or

fractions

\set Score.skipBars = ##t
\time 3/4

R2. | R2.%2

\time 13/8

R1*13/8

R1x13/8%12 |

\time 10/8 R4x*5*4 |

0 29 12n4
;\)\I | I

An R spanning a single measure is printed as either a whole rest or a breve, centered in the
measure regardless of the time signature.

If there are only a few measures of rest, LilyPond prints “church rests” (a series of rectangles)
in the staff. To replace that with a simple rest, use MultiMeasureRest.expand-limit.

\set Score.skipBars = ##t

R1*2 | R1*5 | R1%9

\override MultiMeasureRest #'expand-limit = 1
R1%2 | R1%5 | R1%9

h 2 5 9 2 5 9
G C " [T [[[]
o

Texts can be added to multi-measure rests by using the note-markup syntax Section 8.1.4

[Text

markup], page 170. A variable (\fermataMarkup) is provided for adding fermatas

\set Score.skipBars = #it

\time 3/4

R2.%10"\markup { \italic "ad lib." }
R2. " \fermataMarkup

ad 1ib.
N 10 ~
e B e
A2V
o

Warning! This text is created by MultiMeasureRestText, not TextScript.

\override TextScript #'padding = #5

R17"1low"

\override MultiMeasureRestText #'padding = #5
R17"high"

Chapter 8: Advanced notation 186
high

0 low
A -]

[{an W W1
N3,
eJ

If you want to have text on the left end of a multi-measure rest, attach the text to a zero-
length skip note, i.e.,

s1x0""Allegro"
R1x4

See also
Program reference: MultiMeasureRestMusicGroup, MultiMeasureRest.

The layout object MultiMeasureRestNumber is for the default number, and
MultiMeasureRestText for user specified texts.

Bugs
It is not possible to use fingerings (e.g., R1-4) to put numbers over multi-measure rests. And
the pitch of multi-measure rests (or staff-centered rests) can not be influenced.

There is no way to automatically condense multiple rests into a single multi-measure rest.
Multi-measure rests do not take part in rest collisions.

Be careful when entering multi-measure rests followed by whole notes. The following will
enter two notes lasting four measures each

R1%4 cis cis

When skipBars is set, the result will look OK, but the bar numbering will be off.

8.2.2 Metronome marks
Metronome settings can be entered as follows
\tempo duration = per-minute

In the MIDI output, they are interpreted as a tempo change. In the layout output, a
metronome marking is printed

\tempo 8.=120 c''1

o) ﬁ =120
oJ

Commonly tweaked properties
To change the tempo in the MIDI output without printing anything, make the metronome
marking invisible
\once \override Score.MetronomeMark #'transparent = ##t
To print other metronome markings, use these markup commands

c4"\markup {

(
\smaller \general-align #Y #DOWN \note #"16." #1

\smaller \general-align #Y #DOWN \note #"8" #1
)}

Chapter 8: Advanced notation 187

(N=d)

See Section 8.1.4 [Text markup|, page 170 for more details.

See also

Program reference: MetronomeMark.

Bugs

Collisions are not checked. If you have notes above the top line of the staff (or notes with
articulations, slurs, text, etc), then the metronome marking may be printed on top of musical
symbols. If this occurs, increase the padding of the metronome mark to place it further away
from the staff.

\override Score.MetronomeMark #'padding = #2.5

8.2.3 Rehearsal marks

To print a rehearsal mark, use the \mark command
cl \mark \default
cl \mark \default
cl \mark #8

cl \mark \default
c1l \mark \default

A B H J

{ ¢ O <« <« <« <«

P

The letter ‘I’ is skipped in accordance with engraving traditions. If you wish to include the
letter ‘I’, then use

\set Score.markFormatter = #format-mark-alphabet

The mark is incremented automatically if you use \mark \default, but you can also use
an integer argument to set the mark manually. The value to use is stored in the property
rehearsalMark.

The style is defined by the property markFormatter. It is a function taking the current mark
(an integer) and the current context as argument. It should return a markup object. In the
following example, markFormatter is set to a canned procedure. After a few measures, it is set
to function that produces a boxed number.

\set Score.markFormatter = #format-mark-numbers
cl \mark \default

cl \mark \default

\set Score.markFormatter
cl \mark \default

cl \mark \default

cl

#format-mark-box—-numbers

1 21 38 [

O O O O

o
N (@
N
v

e

Chapter 8: Advanced notation 188

The file ‘scm/translation-functions.scm’ contains the definitions of format-mark-
numbers (the default format), format-mark-box-numbers, format-mark-letters and
format-mark-box-letters. These can be used as inspiration for other formatting functions.

You may use format-mark-barnumbers, format-mark-box-barnumbers, and format-mark-
circle-barnumbers to get bar numbers instead of incremented numbers or letters.

Other styles of rehearsal mark can be specified manually
\mark "A1"

Score.markFormatter does not affect marks specified in this manner. However, it is possible
to apply a \markup to the string.

\mark \markup{ \box A1l }
Music glyphs (such as the segno sign) may be printed inside a \mark

cl \mark \markup { \musicglyph #"scripts.segno" }
cl \mark \markup { \musicglyph #"scripts.coda" }
cl \mark \markup { \musicglyph #"scripts.ufermata" }

cl
n % $_ [e\
-)
U
ANIVJ
[Y) o o -© -©

See Section C.4 [The Feta font], page 316 for a list of symbols which may be printed with
\musicglyph.

The horizontal location of rehearsal marks can be adjusted by setting break-align-symbol

cl
\key cis \major
\clef alto

\override Score.RehearsalMark #'break-align-symbol = #'key-signature
\mark "on-key"

cis

\key ces \major

\override Score.RehearsalMark #'break-align-symbol
\clef treble

\mark "on clef"

ces

#'clef

break-align-symbol may also accept the following values: ambitus, breathing-sign, clef,
custos, staff-bar, left-edge, key-cancellation, key-signature, and time-signature.
Setting break-align-symbol will only have an effect if the symbol appears at that point in the
music.

Chapter 8: Advanced notation 189

See also
This manual: Section 8.1.3 [Text marks|, page 168.
Program reference: RehearsalMark.

Init files: ‘scm/translation-functions.scm’ contains the definition of format-mark-
numbers and format-mark-letters. They can be used as inspiration for other formatting
functions.

Examples: ‘input/regression/rehearsal-mark-letter.ly’,

‘input/regression/rehearsal-mark-number.ly’.

8.2.4 Bar numbers

Bar numbers are printed by default at the start of the line. The number itself is stored in the
currentBarNumber property, which is normally updated automatically for every measure.
\repeat unfold 4 {c4 c ¢ c} \break
\set Score.currentBarNumber = #50
\repeat unfold 4 {c4 c c c}

— i
R S S S S S S A S S S A S

Bar numbers may only be printed at bar lines; to print a bar number at the beginning of a
piece, an empty bar line must be added

\set Score.currentBarNumber = #50
\bar nn

\repeat unfold 4 {c4 c c c} \break
\repeat unfold 4 {c4 ¢ c c}

o o oo O O 6 O 6 OO0

Bar numbers can be typeset at regular intervals instead of at the beginning of each line. This
is illustrated in the following example, whose source is available as ‘input/test/bar-number
-regular-interval.ly’

N |®

e
|

Chapter 8: Advanced notation 190

Bar numbers can be removed entirely by removing the Bar number engraver from the score.

\layout {
\context {
\Score
\remove "Bar_number_engraver"
b
}
\relative c''{
c4 ¢ ¢ ¢ \break
c4d ccc

A2V
U | | | |

See also

Program reference: BarNumber.

Examples: ‘input/test/bar-number-every-five-reset.ly’, and ‘input/test/bar
-number-regular-interval.ly’.

Bugs

Bar numbers can collide with the StaffGroup bracket, if there is one at the top. To solve this,
the padding property of BarNumber can be used to position the number correctly.

8.2.5 Instrument names

In an orchestral score, instrument names are printed at the left side of the staves.

This can be achieved by setting Staff.instrumentName and Staff.shortInstrumentName,
or PianoStaff.instrumentName and PianoStaff.shortInstrumentName. This will print text
before the start of the staff. For the first staff, instrumentName is used, for the following ones,
shortInstrumentName is used.

\set Staff.instrumentName = "Ploink "
\set Staff.shortInstrumentName = "Plk "
cl

\break

Cll

o)
)4

Ploink gy €0——
e o

20 o

Plk :éﬁ
()

Chapter 8: Advanced notation 191

You can also use markup texts to construct more complicated instrument names, for example

\set Staff.instrumentName = \markup {
\column { "Clarinetti"
\line { "in B" \smaller \flat } } }
c''1

Clarinetti GQEE
in B},

oJ

If you wish to center the instrument names, you must center all of them

{ <<
\new Staff {
\set Staff.instrumentName = \markup {
\center-align { "Clarinetti"
\line { "in B" \smaller \flat } } }
c''1
}
\new Staff {
\set Staff.instrumentName = \markup{ \center-align { Vibraphone 1}}
c''1

>>

Clarinetti
in B},

<«

=
N @4

[@)

an
N @4

Vibraphone

O P

For longer instrument names, it may be useful to increase the indent setting in the \layout
block.

To center instrument names while leaving extra space to the right,

\new StaffGroup \relative
<<
\new Staff {
\set Staff.instrumentName
cl c1

\markup { \hcenter-in #10 "blabla" }

}

\new Staff {
\set Staff.instrumentName = \markup { \hcenter-in #10 "blo" }
cl cl

}
>>

Chapter 8: Advanced notation 192

0
blabla €
ANV,
[Y) -© o
()
)" 4
blo (€
ANV,
[Y) -© o

To add instrument names to other contexts (such as GrandStaff, ChoirStaff, or
StaffGroup), the engraver must be added to that context.

\layout{
\context {\GrandStaff \consists "Instrument_name_engraver"}

¥

More information about adding and removing engravers can be found in Section 9.2.4 [Modifying
context plug-ins|, page 222.

Instrument names may be changed in the middle of a piece,

\set Staff.instrumentName = "First"
\set Staff.shortInstrumentName = "one"
cl ¢ ¢ ¢ \break

cl ¢ ¢ ¢ \break

\set Staff.instrumentName = "Second"
\set Staff.shortInstrumentName = "two"
cl ¢ ¢ ¢ \break

cl ¢ ¢ ¢ \break

()

.)" 4
First fA—€

D

[Y)

q11
q1]
q11
q1]

d1l1
d11
q11
q111

dll1
d1l1
q1l1
q1l1

dill
dlll
q1l
q1]

See also

Program reference: InstrumentName.

Chapter 8: Advanced notation 193

8.2.6 Instrument transpositions

The key of a transposing instrument can also be specified. This applies to many wind instru-
ments, for example, clarinets (B-flat, A, and E-flat), horn (F) and trumpet (B-flat, C, D, and
E-flat).

The transposition is entered after the keyword \transposition

\transposition bes %), B-flat clarinet
This command sets the property instrumentTransposition. The value of this property is used
for MIDI output and quotations. It does not affect how notes are printed in the current staff.
To change the printed output, see Section 6.1.8 [Transpose], page 63.

The pitch to use for \transposition should correspond to the real sound heard when a c'
written on the staff is played by the transposing instrument. For example, when entering a score
in concert pitch, typically all voices are entered in C, so they should be entered as

clarinet = {
\transposition c'

}
saxophone = {
\transposition c'

}

The command \transposition should be used when the music is entered from a (transposed)
orchestral part. For example, in classical horn parts, the tuning of the instrument is often
changed during a piece. When copying the notes from the part, use \transposition, e.g.,

\transposition d'
c ! 4" n in Dll

\transposition g'

Cl4“||in Gll

8.2.7 Ottava brackets

‘Ottava’ brackets introduce an extra transposition of an octave for the staff. They are created
by invoking the function set-octavation

\relative c''' {
a2 b
#(set-octavation 1)
ab
#(set-octavation 0)
ab

}

e @ Sva o o

-
N

P
\
T

The set-octavation function also takes -1 (for 8va bassa), 2 (for 15ma), and -2 (for 15ma
bassa) as arguments. Internally the function sets the properties ottavation (e.g., to "8va" or
"8vb") and centralCPosition. For overriding the text of the bracket, set ottavation after
invoking set-octavation, i.e.,

Chapter 8: Advanced notation 194

{
#(set-octavation 1)
\set Staff.ottavation = #"8"
Cl LI
}
81
See also

Program reference: OttavaBracket.

Examples: ‘input/regression/ottava.ly’, ‘input/regression/ottava-broken.ly’.

Bugs

set-octavation will get confused when clef changes happen during an octavation bracket.

8.2.8 Different editions from one source

The \tag command marks music expressions with a name. These tagged expressions can be
filtered out later. With this mechanism it is possible to make different versions of the same
music source
In the following example, we see two versions of a piece of music, one for the full score, and
one with cue notes for the instrumental part
cl
<<
\tag #'part <<
R1 \\
{
\set fontSize = #-1
cd_"cue" f2 g4 }
>>

\tag #'score R1
>>
cl

The same can be applied to articulations, texts, etc.: they are made by prepending
-\tag #your-tag

to an articulation, for example,
cl-\tag #'part "4

This defines a note with a conditional fingering indication.

By applying the \keepWithTag and \removeWithTag commands, tagged expressions can be
filtered. For example,
<<
the music
\keepWithTag #'score the music
\keepWithTag #'part the music
>>

would yield

Chapter 8: Advanced notation 195

o) 4
)" 4 -
both {es—€—> ———
ANIV 7] =
oJ [
cue
o) 4
)" 4 -
part| fn—C—C =
ANV [7] =
J r [
h cue
)’ -
scoreHpn—E— ©
ANV
oJ

The arguments of the \tag command should be a symbol (such as #'score or #'part),
followed by a music expression. It is possible to put multiple tags on a piece of music with
multiple \tag entries,

\tag #'original-part \tag #'transposed-part

See also

Examples: ‘input/regression/tag-filter.ly’.

Bugs

Multiple rests are not merged if you create the score with both tagged sections.

8.3 Orchestral music

Orchestral music involves some special notation, both in the full score and the individual parts.
This section explains how to tackle some common problems in orchestral music.

8.3.1 Automatic part combining

Automatic part combining is used to merge two parts of music onto a staff. It is aimed at
typesetting orchestral scores. When the two parts are identical for a period of time, only one
is shown. In places where the two parts differ, they are typeset as separate voices, and stem
directions are set automatically. Also, solo and a due parts are identified and can be marked.

The syntax for part combining is
\partcombine musicexprl musicexpr2

The following example demonstrates the basic functionality of the part combiner: putting
parts on one staff, and setting stem directions and polyphony
\new Staff \partcombine
\relative g' { gga(b) ccrr}
\relative g' { ggrireegg}

A a2 Solo . | SoloII
)" 4

S—— 1

The first g appears only once, although it was specified twice (once in each part). Stem, slur,
and tie directions are set automatically, depending whether there is a solo or unisono. The first
part (with context called one) always gets up stems, and ‘Solo’, while the second (called two)
always gets down stems and ‘Solo IT’.

oJ

If you just want the merging parts, and not the textual markings, you may set the property
printPartCombineTexts to false

Chapter 8: Advanced notation 196

\new Staff <<
\set Staff.printPartCombineTexts = ##f
\partcombine
\relative g' { g a(b) r }
\relative g' { grd r £ }
>>

0 |
ot =

oJ

To change the text that is printed for solos or merging, you may set the soloText,
s0loIIText, and aDueText properties.

\new Staff <<
\set Score.soloText = #"ichi"
\set Score.sololIText = #"ni"
\set Score.aDueText = #"tachi"
\partcombine
\relative g' { g4 g a(b) r }
\relative g' { gd gr r £ }
>>

g tachiichi 4

Both arguments to \partcombine will be interpreted as Voice contexts. If using relative
octaves, \relative should be specified for both music expressions, i.e.,

\partcombine
\relative ... musicexprl
\relative ... musicexpr2

A \relative section that is outside of \partcombine has no effect on the pitches of musicexprl
and musicexpr2.

See also

Program reference: PartCombineMusic.

Bugs

When printPartCombineTexts is set, when the two voices play the same notes on and off, the
part combiner may typeset a2 more than once in a measure.

\partcombine cannot be inside \times.
\partcombine cannot be inside \relative.

Internally, the \partcombine interprets both arguments as Voices named one and two
and then decides when the parts can be combined. Consequently, if the arguments switch to
differently named Voice contexts, the events in those will be ignored.

Chapter 8: Advanced notation 197

8.3.2 Hiding staves

In orchestral scores, staff lines that only have rests are usually removed; this saves some space.
This style is called ‘French Score’. For Lyrics, ChordNames and FiguredBass, this is switched
on by default. When the lines of these contexts turn out empty after the line-breaking process,
they are removed.

For normal staves, a specialized Staff context is available, which does the same: staves
containing nothing (or only multi-measure rests) are removed. The context definition is stored in
\RemoveEmptyStaffContext variable. Observe how the second staff in this example disappears
in the second line

\layout {
\context { \RemoveEmptyStaffContext }
}

{
\relative c' <<
\new Staff { e4 f g a \break cl }
\new Staff { c4 d e f \break R1 }
>>

The first system shows all staves in full. If empty staves should be removed from the first
system too, set remove-first to true in VerticalAxisGroup.

\override Score.VerticalAxisGroup #'remove-first = ##t

To remove other types of contexts, use \AncientRemoveEmptyStaffContext or
\RemoveEmptyRhythmicStaffContext.

Another application is making ossia sections, i.e., alternative melodies on a separate piece of
staff, with help of a Frenched staff.

8.3.3 Quoting other voices

With quotations, fragments of other parts can be inserted into a part directly. Before a part
can be quoted, it must be marked especially as quotable. This is done with the \addquote
command.

\addquote name music

Here, name is an identifying string. The music is any kind of music. Here is an example of
\addquote

Chapter 8: Advanced notation 198

\addquote clarinet \relative c' {
f4 fis g gis
}
This command must be entered at toplevel, i.e., outside any music blocks.
After calling \addquote, the quotation may then be done with \quoteDuring or \cueDuring,
\quoteDuring #name music
During a part, a piece of music can be quoted with the \quoteDuring command.
\quoteDuring #"clarinet" { s2. }

This would cite three quarter notes (the duration of s2.) of the previously added clarinet
voice.

More precisely, it takes the current time-step of the part being printed, and extracts the notes
at the corresponding point of the \addquoted voice. Therefore, the argument to \addquote
should be the entire part of the voice to be quoted, including any rests at the beginning.

Quotations take into account the transposition of both source and target instruments, if they
are specified using the \transposition command.

\addquote clarinet \relative c' {
\transposition bes

f4 fis g gis
}
{
e'8 £'8 \quoteDuring #"clarinet" { s2 }
}
o)
)’ 4

A —gs
%D_

The type of events that are present in cue notes can be trimmed with the quotedEventTypes
property. The default value is (note-event rest-event), which means that only notes and
rests of the cued voice end up in the \quoteDuring. Setting

\set Staff.quotedEventTypes =
#' (note-event articulation-event dynamic-event)

will quote notes (but no rests), together with scripts and dynamics.

Bugs

Only the contents of the first Voice occurring in an \addquote command will be considered for
quotation, so music can not contain \new and \context Voice statements that would switch to
a different Voice.

Quoting grace notes is broken and can even cause LilyPond to crash.

Quoting nested triplets may result in poor notation.

See also
In this manual: Section 8.2.6 [Instrument transpositions|, page 193.
Examples: ‘input/regression/quote.ly’ ‘input/regression/quote-transposition.ly’

Program reference: QuoteMusic.

Chapter 8: Advanced notation 199

8.3.4 Formatting cue notes

The previous section deals with inserting notes from another voice. There is a more advanced
music function called \cueDuring, which makes formatting cue notes easier.

The syntax is
\cueDuring #name #updown music

This will insert notes from the part name into a Voice called cue. This happens simultane-
ously with music, which usually is a rest. When the cue notes start, the staff in effect becomes
polyphonic for a moment. The argument updown determines whether the cue notes should be
notated as a first or second voice.

smaller = {
\set fontSize = #-2
\override Stem #'length-fraction = #0.8
\override Beam #'thickness = #0.384
\override Beam #'length-fraction = #0.8

\addquote clarinet \relative {
R1%20
r2r8 c f f

\new Staff \relative <<

% setup a context for cue notes.
\new Voice = "cue" { \smaller \skip 1*21 }

\set Score.skipBars = ##t

\new Voice {
R1x%20
\cueDuring #"clarinet" #1 {
R1
}

gd g2.

>>

20

oo

o
7
E

N (o
1

Gz e
-

v -

Here are a couple of hints for successful cue notes
e Cue notes have smaller font sizes.
e the cued part is marked with the instrument playing the cue.

e when the original part takes over again, this should be marked with the name of the original
instrument.

Any other changes introduced by the cued part should also be undone. For example, if the
cued instrument plays in a different clef, the original clef should be stated once again.

Chapter 8: Advanced notation 200

The macro \transposedCueDuring is useful to add cues to instruments which use a com-
pletely different octave range (for example, having a cue of a piccolo flute within a contra bassoon
part).

picc = \relative c''' {
\clef "treble~8"
R1 |
c8 cce g2l
ad g g2 |
}
\addquote "picc" { \picc }

cbsn = \relative c, {
\clef "bass_8"

cdrgr
\transposedCueDuring #"picc" #UP c,, { Rl } |
cdrgr |
}
<<
\context Staff = "picc" \picc
\context Staff = "cbsn" \cbsn
>>
-
IQ‘) L o
(n—C€ i
ANV 1 1
¢
33
) . I; |) — I\ N
B S—— S
3 o — o

8.3.5 Aligning to cadenzas

In an orchestral context, cadenzas present a special problem: when constructing a score that
includes a cadenza, all other instruments should skip just as many notes as the length of the
cadenza, otherwise they will start too soon or too late.

A solution to this problem are the functions mmrest-of-length and skip-of-length. These
Scheme functions take a piece of music as argument, and generate a \skip or multi-rest, exactly
as long as the piece. The use of mmrest-of-length is demonstrated in the following example

cadenza = \relative c' {
cd d8 << {ef g} \\ {add. > >
gd f2 g4 g

}

\new GrandStaff <<
\new Staff { \cadenza c'4 }
\new Staff {
#(ly:export (mmrest-of-length cadenza))
c'4
}
>>

Chapter 8: Advanced notation 201

"4 | —
A NV —]

e —-) F—0 @

eJ o @ . -
"4

fes U

A3V

[Y) &

8.4 Contemporary notation

In the 20th century, composers have greatly expanded the musical vocabulary. With this ex-
pansion, many innovations in musical notation have been tried. The book “Music Notation in
the 20th century” by Kurt Stone gives a comprehensive overview (see Appendix A [Literature
list], page 309).

This section describes notation that does not fit into traditional notation categories, such
as pitches, tuplet beams, and articulation. For contemporary notation that fits into traditional
notation categories, such as microtones, nested tuplet beams, and unusual fermatas, please see
those sections of the documentation.

8.4.1 Polymetric notation

Double time signatures are not supported explicitly, but they can be faked. In the next example,
the markup for the time signature is created with a markup text. This markup text is inserted
in the TimeSignature grob. See also ‘input/test/compound-time.ly’).

% create 2/4 + 5/8
tsMarkup =\markup {
\override #'(baseline-skip . 2) \number {
\column { ll2ll "4“ }
\vcenter "+"
\bracket \column { "5" "8" }
}
}

{
\override Staff.TimeSignature #'stencil = #ly:text-interface::print
\override Staff.TimeSignature #'text = #tsMarkup

\time 3/2

c'2 \bar ":" c'4 c'4.
}

()

)" 4) = D

/\ A el .

e\ 'Q .

UV X (@) .

[y < - &

Each staff can also have its own time signature. This is done by moving the Timing_
translator to the Staff context.

\layout {
\context { \Score
\remove "Timing_translator"
\remove "Default_bar_line_engraver"
}
\context {
\Staff
\consists "Timing_translator"
\consists "Default_bar_line_engraver"

Chapter 8: Advanced notation 202

}
}
Now, each staff has its own time signature.
<<
\new Staff {
\time 3/4
cd cc | ccec |
}
\new Staff {
\time 2/4
cdclcclcec
}
\new Staff {
\time 3/8
cd. c8 cccd. c8 c c
}
>>
n €
X — .
[fan Y / | | |
SV | | |
() 4 o & - P o
()
X2
[fan Y A
ANIVARES 3
() 4 & - 4 @ s
n €
X —
[[an) I | | I | |
ANV | | | | | |
[Y) P ¢4 oo o -

A different form of polymetric notation is where note lengths have different values across
staves.

This notation can be created by setting a common time signature for each staff but replacing
it manually using timeSignatureFraction to the desired fraction. Then the printed durations
in each staff are scaled to the common time signature. The latter is done with \compressMusic,
which is used similar to \times, but does not create a tuplet bracket. The syntax is

\compressMusic #'(numerator . denominator) musicexpr

In this example, music with the time signatures of 3/4, 9/8, and 10/8 are used in parallel.
In the second staff, shown durations are multiplied by 2/3, so that 2/3 * 9/8 = 3/4, and in the
third staff, shown durations are multiplied by 3/5, so that 3/5 * 10/8 = 3/4.

\relative c' { <<

\new Staff {
\time 3/4
cdcclccecl

}

\new Staff {
\time 3/4
\set Staff.timeSignatureFraction = #'(9 . 8)
\compressMusic #'(2 . 3)

\repeat unfold 6 { c8[c c] }

Chapter 8: Advanced notation 203

\new Staff {
\time 3/4
\set Staff.timeSignatureFraction = #'(10 . 8)
\compressMusic #'(3 . 5) {
\repeat unfold 2 { c8[c c] }
\repeat unfold 2 { c8[c] }
| c4. c4. \times 2/3 { c8 c ¢ } c4
}
}

>> }

Y
L1
L Y
L YiE
L Y
L Y
L Y
L1
I8
L Y
L1
L 1S
L1l
L Y
L Y8
L1
L Y

Oi

O U P
0 o=

.
L 1
o
.

L Yl
.

'\
'\
'\
o

.

.
ol

L JAL 43
il

.

Bugs

When using different time signatures in parallel, the spacing is aligned vertically, but bar lines
distort the regular spacing.

8.4.2 Time administration

Time is administered by the Time_signature_engraver, which usually lives in the Score con-
text. The bookkeeping deals with the following variables

currentBarNumber
The measure number.

measurelLength

The length of the measures in the current time signature. For a 4/4 time this is 1,
and for 6/8 it is 3/4.

measurePosition
The point within the measure where we currently are. This quantity is reset to 0
whenever it exceeds measureLength. When that happens, currentBarNumber is
incremented.

timing If set to true, the above variables are updated for every time step. When set to
false, the engraver stays in the current measure indefinitely.

Timing can be changed by setting any of these variables explicitly. In the next example, the
4/4 time signature is printed, but measureLength is set to 5/4. After a while, the measure is
shortened by 1/8, by setting measurePosition to 7/8 at 2/4 in the measure, so the next bar
line will fall at 2/4 + 3/8. The 3/8 arises because 5/4 normally has 10/8, but we have manually
set the measure position to be 7/8 and 10/8 - 7/8 = 3/8.

\set Score.measurelength = #(ly:make-moment 5 4)
cl c4
cl c4
c4 c4

Chapter 8: Advanced notation 204

\set Score.measurePosition = #(ly:make-moment 7 8)
b8 b b
c4 cl

N (o

G e
-

j

©- o ©- o O @ r € ©-
As the example illustrates, 1y:make-moment n m constructs a duration of n/m of a whole note.

For example, 1y:make-moment 1 8 is an eighth note duration and ly:make-moment 7 16 is the
duration of seven sixteenths notes.

8.4.3 Proportional notation

Notes can be spaced proportionally to their time-difference by assigning a duration to
proportionalNotationDuration
<<
\set Score.proportionalNotationDuration = #(ly:make-moment 1 16)
\new Staff { c8[c ccccl] c4c2r1r21}
\new Staff { c2 \times 2/3 { c8 c c } c4 cl1 }

>>
[[av Y F
ANV I
U I
f
/\ r)
[oY W2
ANV I
v 3
s
A —2
[Fan)] -
ANV |
U |
f
7\ O
[Fan)
ANV
¢

Setting this property only affects the ideal spacing between consecutive notes. For true
proportional notation, the following settings are also required.

e True proportional notation requires that symbols are allowed to overstrike each other. That
is achieved by removing the Separating_line_group_engraver from Staff context.

e Spacing influence of prefatory matter (clefs, bar lines, etc.) is removed by setting the
strict-note-spacing property to #t in SpacingSpanner grob.

e Optical spacing tweaks are switched by setting uniform-stretching in SpacingSpanner
to true.

See also

‘input/regression/spacing-proportional/.ly’ ‘input/regression/
spacing-strict-notespacing/.ly’ ‘input/regression/spacing-strict-spacing-grace/.ly’

An example of strict proportional notation is in the example file ‘input/proportional.ly’.

Chapter 8: Advanced notation 205

8.4.4 Clusters

A cluster indicates a continuous range of pitches to be played. They can be denoted as the
envelope of a set of notes. They are entered by applying the function makeClusters to a
sequence of chords, e.g.,

\makeClusters { <c e > <b f'> }

The following example (from ‘input/regression/cluster.ly’) shows what the result looks
like

0) | =

b € ea e P B
U & | |
) ~—_ __=

Ordinary notes and clusters can be put together in the same staff, even simultaneously. In
such a case no attempt is made to automatically avoid collisions between ordinary notes and
clusters.

See also
Program reference: ClusterSpanner, ClusterSpannerBeacon, Cluster_spanner_engraver.

Examples: ‘input/regression/cluster.ly’.

Bugs

Music expressions like << { g8 e8 } a4 >> are not printed accurately. Use <g a>8 <e a>8 instead.

8.4.5 Special noteheads

Different noteheads are used by various instruments for various meanings — crosses are used for
“parlato” with vocalists, stopped notes on guitar; diamonds are used for harmonics on string
instruments, etc. There is a shorthand (\harmonic) for diamond shapes; the other notehead
styles are produced by tweaking the property

c4d d

\override NoteHead #'style = #'cross
e f

\revert NoteHead #'style

e d <c f\harmonic> <d a'\harmonic>

)" 4) |

4\ r £) | |

'(‘\ A U2 \)I)(I S kN,
J e ¥ o g

To see all notehead styles, please see ‘input/regression/note-head-style.ly’.

Chapter 8: Advanced notation 206

See also

Program reference: NoteHead.

8.4.6 Feathered beams

Feathered beams are printed by setting the grow-direction property of a Beam. The
\featherDurations function can be used to adjust note durations.

\featherDurations #(ly:make-moment 5 4)

{
\override Beam #'grow-direction = #LEFT
ci6[c c c c ¢ c]

}

Bugs

The \featherDuration command only works with very short music snippets.

8.4.7 Improvisation

Improvisation is sometimes denoted with slashed note heads. Such note heads can be created by
adding a Pitch_squash_engraver to the Staff or Voice context. Then, the following command

\set squashedPosition = #0
\override NoteHead #'style = #'slash

switches on the slashes.

There are shortcuts \improvisationOn (and an accompanying \improvisation0ff) for this
command sequence. They are used in the following example

\new Staff \with {
\consists Pitch_squash_engraver
} \transpose c c¢' {
e8 e g a al6(bes)(a8) g \improvisationOn
e8
“e27e8 f4 fis8
“fis2 \improvisationOff al6(bes) a8 g e

| — . y I X
| | ! K | N
]] N—F)
N 7 77 77—/ 1/
[Y) I 4 77 Wi~

Chapter 8: Advanced notation 207

8.4.8 Selecting notation font size

The easiest method of setting the font size of any context is by setting the fontSize property.

c8
\set fontSize = #-4
c f
\set fontSize = #3
g

4\ r £)

Gt .o

[Y) o

It does not change the size of variable symbols, such as beams or slurs.

Internally, the fontSize context property will cause the font-size property to be set in all
layout objects. The value of font-size is a number indicating the size relative to the standard
size for the current staff height. Each step up is an increase of approximately 12% of the font size.
Six steps is exactly a factor two. The Scheme function magstep converts a font-size number
to a scaling factor. The font-size property can also be set directly, so that only certain layout
objects are affected.

c8
\override NoteHead #'font-size = #-4
c f
\override NoteHead #'font-size = #3
g

€ .o

[y, o 4

Font size changes are achieved by scaling the design size that is closest to the desired size.
The standard font size (for font-size equals 0), depends on the standard staff height. For a
20pt staff, a 10pt font is selected.

The font-size property can only be set on layout objects that use fonts. These are the ones
supporting the font-interface layout interface.

Predefined commands

The following commands set fontSize for the current voice:

\tiny, \small, \normalsize.

8.5 Educational use
With the amount of control that LilyPond offers, one can make great teaching tools in addition
to great musical scores.

8.5.1 Balloon help

Elements of notation can be marked and named with the help of a square balloon. The primary
purpose of this feature is to explain notation.

The following example demonstrates its use.

Chapter 8: Advanced notation

\new Voice \with { \consists "Balloon_engraver" }

{
\balloonGrobText #'Stem #'(3 . 4) \markup { "I'm a Stem" }
<c-\balloonText #'(-2 . -2) \markup { Hello } >8

}

A /Im a Stem

)" 4
g Hello E

208

There are two music functions, balloonText and balloonGrobText. The latter takes the name
of the grob to adorn, while the former may be used as an articulation on a note. The other

arguments are the offset and the text of the label.

See also
Program reference: text-balloon-interface.

Examples: ‘input/regression/balloon.ly’.

8.5.2 Blank music sheet

A blank music sheet can be produced also by using invisible notes, and removing Bar_number_

engraver.

\layout{ indent = #0O }
emptymusic = {
\repeat unfold 2 % Change this for more lines.
{ si\break }
\bar "|."
}
\new Score \with {
\override TimeSignature #'transparent = #it
% un-comment this line if desired
% \override Clef #'transparent = ##t
defaultBarType = #""
\remove Bar_number_engraver
} <<

% modify these to get the staves you want
\new Staff \emptymusic
\new TabStaff \emptymusic

>>

P | P>

Chapter 8: Advanced notation 209

BN | P

8.5.3 Hidden notes

Hidden (or invisible or transparent) notes can be useful in preparing theory or composition
exercises.

c4 d4

\hideNotes

ed f4

\unHideNotes

gl a

8.5.4 Shape note heads

In shape note head notation, the shape of the note head corresponds to the harmonic function
of a note in the scale. This notation was popular in the 19th century American song books.

Shape note heads can be produced by setting \aikenHeads or \sacredHarpHeads, depending
on the style desired.

\aikenHeads

c8 d4 e8 a2 gl

\sacredHarpHeads

c8 d4. e8 a2 gl

() = O
)" 4 D |

4\ r £ N |

[[an YA O] 1) e) /T

ANV) :J’ ~F l/ 4

QJ -

Shapes are determined on the step in the scale, where the base of the scale is determined by
the \key command

Shape note heads are implemented through the shapeNoteStyles property. Its value is a

vector of symbols. The k-th element indicates the style to use for the k-th step of the scale.
Arbitrary combinations are possible, e.g.

\set shapeNoteStyles = ##(cross triangle fa #f mensural xcircle diamond)
c8 d4. e8 a2 gl

)" 4

7\ y £} |

[fan Y W] |) N
ANV) | T v
eJ VAR

8.5.5 Easy Notation note heads

The ‘easy play’ note head includes a note name inside the head. It is used in music for beginners

Chapter 8: Advanced notation 210

\setEasyHeads
c'2e'4f" | g'1

0)
&e
g d °°

ey
o
N

The command \setEasyHeads overrides settings for the NoteHead object. To make the letters
readable, it has to be printed in a large font size. To print with a larger font, see Section 11.2.1
[Setting the staff size|, page 250.

Predefined commands

\setEasyHeads

8.5.6 Analysis brackets

Brackets are used in musical analysis to indicate structure in musical pieces. LilyPond supports a
simple form of nested horizontal brackets. To use this, add the Horizontal_bracket_engraver
to Staff context. A bracket is started with \startGroup and closed with \stopGroup

\score {
\relative c'' {
c4\startGroup\startGroup
c4\stopGroup
c4\startGroup
c4\stopGroup\stopGroup
}
\layout {
\context {
\Staff \consists "Horizontal_bracket_engraver"

i3,

0

/

SY
J /7

See also

Program reference: HorizontalBracket.

Examples: ‘input/regression/note-group-bracket.ly’.

8.5.7 Coloring objects

Individual objects may be assigned colors. You may use the color names listed in the Section C.3
[List of colors|, page 314.

\override NoteHead #'color = #red

cd c

\override NoteHead #'color = #(xll-color 'LimeGreen)
d

\override Stem #'color = #blue
e

Chapter 8: Advanced notation 211

an
N (@4

G
alll

The full range of colors defined for X11 can be accessed by using the Scheme function x11-
color. The function takes one argument that can be a symbol

\override Beam #'color = #(xll-color 'MediumTurquoise)

or a string

\override Beam #'color = #(x1l-color "MediumTurquoise")

The first form is quicker to write and is more efficient. However, using the second form it is
possible to access X11 colors by the multi-word form of its name

\override Beam #'color = #(xll-color "medium turquoise")

If x11-color cannot make sense of the parameter then the color returned defaults to black. It
should be obvious from the final score that something is wrong.

This example illustrates the use of x11-color. Notice that the stem color remains black after
being set to (x11-color 'Boggle), which is deliberate nonsense.

{
\override Staff.StaffSymbol #'color = #(xll-color 'SlateBlue2)
\set Staff.instrumentName = \markup {
\with-color #(xll-color 'mavy) "Clarinet"
}
\time 2/4
gisl |8 al 1
\override Beam #'color = #(xll-color "medium turquoise")
gis'' a''
\override NoteHead #'color = #(xll-color "LimeGreen")
gis'' a''
\override Stem #'color = #(x1ll-color 'Boggle)
gis'' a'!'
}
g1 0T
Clarinet (y =t
&)
J
See also

Appendix: Section C.3 [List of colors|, page 314.

Bugs
Not all x11 colors are distinguishable in a web browser. For web use normal colors are recom-
mended.

An x11 color is not necessarily exactly the same shade as a similarly named normal color.

Notes in a chord cannot be colored with \override; use \tweak instead. See Section 9.3.5
[Objects connected to the input], page 231 for details.

8.5.8 Parentheses

Objects may be parenthesized by prefixing \parenthesize to the music event,
<

Chapter 8: Advanced notation 212

\parenthesize d

g
>4-\parenthesize -.

This only functions inside chords, even for single notes
< \parenthesize NOTE>

8.5.9 Grid lines

Vertical lines can be drawn between staves synchronized with the notes.

Examples: ‘input/regression/grid-lines.ly’.

Chapter 9: Changing defaults 213

9 Changing defaults

The purpose of LilyPond’s design is to provide the finest output quality as a default. Never-
theless, it may happen that you need to change this default layout. The layout is controlled
through a large number of proverbial “knobs and switches.” This chapter does not list each and
every knob. Rather, it outlines what groups of controls are available and explains how to lookup
which knob to use for a particular effect.

The controls available for tuning are described in a separate document, the Program reference
manual. That manual lists all different variables, functions and options available in LilyPond.
It is written as a HTML document, which is available on-line, but is also included with the
LilyPond documentation package.

There are four areas where the default settings may be changed:
e Automatic notation: changing the automatic creation of notation elements. For example,
changing the beaming rules.
e Output: changing the appearance of individual objects. For example, changing stem direc-
tions or the location of subscripts.
e Context: changing aspects of the translation from music events to notation. For example,
giving each staff a separate time signature.

e Page layout: changing the appearance of the spacing, line breaks, and page dimensions.
These modifications are discussed in Chapter 10 [Non-musical notation|, page 234 and
Chapter 11 [Spacing issues|, page 246.

Internally, LilyPond uses Scheme (a LISP dialect) to provide infrastructure. Overriding
layout decisions in effect accesses the program internals, which requires Scheme input. Scheme
elements are introduced in a .1y file with the hash mark #.!

9.1 Automatic notation

This section describes how to change the way that accidentals and beams are automatically
displayed.

9.1.1 Automatic accidentals

Common rules for typesetting accidentals have been placed in a function. This function is called
as follows

#(set-accidental-style 'STYLE #('CONTEXT#))

The function can take two arguments: the name of the accidental style, and an optional
argument that denotes the context that should be changed. If no context name is supplied,
Staff is the default, but you may wish to apply the accidental style to a single Voice instead.

The following accidental styles are supported

default This is the default typesetting behavior. It corresponds to 18th century common
practice: Accidentals are remembered to the end of the measure in which they occur
and only on their own octave.

voice The normal behavior is to remember the accidentals on Staff-level. This variable,
however, typesets accidentals individually for each voice. Apart from that, the rule
is similar to default.

As a result, accidentals from one voice do not get canceled in other voices, which is
often an unwanted result

1 Appendix B [Scheme tutorial], page 310 contains a short tutorial on entering numbers, lists, strings, and
symbols in Scheme.

http://lilypond.org/doc/stable/Documentation/user/lilypond-internals/

Chapter 9: Changing defaults 214

\new Staff <<
#(set-accidental-style 'voice)
<<

{es g} \\
{c, el
>> >>

S5sr

The voice option should be used if the voices are to be read solely by individual
musicians. If the staff is to be used by one musician (e.g., a conductor) then modern
or modern-cautionary should be used instead.

modern This rule corresponds to the common practice in the 20th century. This rule prints
the same accidentals as default, but temporary accidentals also are canceled in
other octaves. Furthermore, in the same octave, they also get canceled in the fol-
lowing measure

#(set-accidental-style 'modern)
cis' ¢'' cis'2 | ¢'' ¢’

Q\) ﬁdl-'ﬁs

0
e —

modern-cautionary
This rule is similar to modern, but the “extra” accidentals (the ones not typeset by
default) are typeset as cautionary accidentals. They are printed in reduced size or
with parentheses

#(set-accidental-style 'modern-cautionary)
cis' ¢'' cis'2 | c¢'' ¢!

J He I #e

modern-voice
This rule is used for multivoice accidentals to be read both by musicians playing
one voice and musicians playing all voices. Accidentals are typeset for each voice,
but they are canceled across voices in the same Staff.

modern-voice-cautionary
This rule is the same as modern-voice, but with the extra accidentals (the ones not
typeset by voice) typeset as cautionaries. Even though all accidentals typeset by
default are typeset by this variable, some of them are typeset as cautionaries.

piano This rule reflects 20th century practice for piano notation. Very similar to modern
but accidentals also get canceled across the staves in the same GrandStaff or
PianoStaff.

Chapter 9: Changing defaults 215

piano-cautionary
Same as #(set-accidental-style 'piano) but with the extra accidentals typeset
as cautionaries.

no-reset This is the same as default but with accidentals lasting “forever” and not only
until the next measure

#(set-accidental-style 'no-reset)
cl cis cis ¢

N (@

P>
-

forget This is sort of the opposite of no-reset: Accidentals are not remembered at all
— and hence all accidentals are typeset relative to the key signature, regardless of
what was before in the music

#(set-accidental-style 'forget)
\key d\major c4 c cis cis d d dis dis

A n

o

T

an
N [o]

P

ho- hcb oo @ _#"

See also

Program reference: Accidental_engraver, Accidental, and AccidentalPlacement.

Bugs

Simultaneous notes are considered to be entered in sequential mode. This means that in a chord
the accidentals are typeset as if the notes in the chord happen one at a time, in the order in
which they appear in the input file. This is a problem when accidentals in a chord depend on
each other, which does not happen for the default accidental style. The problem can be solved
by manually inserting ! and ? for the problematic notes.

9.1.2 Setting automatic beam behavior

In normal time signatures, automatic beams can start on any note but can only end in a
few positions within the measure: beams can end on a beat, or at durations specified by the
properties in autoBeamSettings. The properties in autoBeamSettings consist of a list of rules
for where beams can begin and end. The default autoBeamSettings rules are defined in ‘scm/
auto-beam.scm’.

In order to add a rule to the list, use
#(override-auto-beam-setting '(be p q n m) a b [context])
e be is either "begin" or "end".

e p/q is the duration of the note for which you want to add a rule. A beam is considered to
have the duration of its shortest note. Set p and q to '*' to have this apply to any beam.

e n/m is the time signature to which this rule should apply. Set n and m to '*' to have this
apply in any time signature.

e a/b is the position in the bar at which the beam should begin/end.

Chapter 9: Changing defaults 216

e context is optional, and it specifies the context at which the change should be made. The
default is 'Voice. #(score-override-auto-beam-setting '(A B CD) EF) is equivalent
to #(override-auto-beam-setting '(AB CD) EF 'Score).

For example, if automatic beams should always end on the first quarter note, use
#(override-auto-beam-setting '(end * * * x) 1 4)

You can force the beam settings to only take effect on beams whose shortest note is a certain
duration

\time 2/4

#(override-auto-beam-setting '(end 1 16 * *) 1 16)
al6 aaaaaaal

a32 a a a al6 a a a a a |
#(override-auto-beam-setting '(end 1 32 * *) 1 16)
a32 a aaal6aaaaal

You can force the beam settings to only take effect in certain time signatures
\time 5/8
#(override-auto-beam-setting '(end * * 5 8) 2 8)
c8 cddd
\time 4/4
eBef feedd
\time 5/8
c8 cddd

0

[@)
NV O] | I | l | (@]] | I |
QJ —

You can also remove a previously set beam-ending rule by using
#(revert-auto-beam-setting '(be p q n m) a b [context])
be, p, q, n, m, a, b and context are the same as above. Note that the default rules are specified
in ‘scm/auto-beam.scm’, so you can revert rules that you did not explicitly create.
\time 4/4
al6aaaaaaaaaaaaaaa

#(revert-auto-beam-setting '(end 1 16 4 4) 1 4)
al6 aaaaaaaaaaaaaaa

g

Chapter 9: Changing defaults 217

210

oJ

The rule in a revert-auto-beam-setting statement must exactly match the original rule. That
is, no wildcard expansion is taken into account.

\time 1/4

#(override-auto-beam-setting '(end 1 16 1 4) 1 8)

alé a a a

#(revert-auto-beam-setting '(end 1 16 * *) 1 8) % this won't revert it!
aaaa

#(revert-auto-beam-setting '(end 1 16 1 4) 1 8) % this will

aaaa

>

If automatic beams should end on every quarter in 5/4 time, specify all endings

#(override-auto-beam-setting '(end * * * %) 1 4 'Staff)
#(override-auto-beam-setting '(end * * * %) 1 2 'Staff)
#(override-auto-beam-setting '(end * * * %) 3 4 'Staff)
#(override-auto-beam-setting '(end * * * x) 5 4 'Staff)

The same syntax can be used to specify beam starting points. In this example, automatic
beams can only end on a dotted quarter note

#(override-auto-beam-setting '(end * * * *) 3 8)
#(override-auto-beam-setting '(end * * * *) 1 2)
#(override-auto-beam-setting '(end * * * x) 7 8)

In 4/4 time signature, this means that automatic beams could end only on 3/8 and on the
fourth beat of the measure (after 3/4, that is 2 times 3/8, has passed within the measure).

If any unexpected beam behaviour occurs, check the default automatic beam settings in ‘scm/

auto-

beam.scm’ for possible interference, because the beam endings defined there will still apply

on top of your own overrides. Any unwanted endings in the default vales must be reverted for
your time signature(s).

For example, to typeset (3 4 3 2)-beam endings in 12/8, begin with

%kt revert default values in scm/auto-beam.scm regarding 12/8 time
#(revert-auto-beam-setting '(end * * 12 8) 3 8)
#(revert-auto-beam-setting '(end * * 12 8) 3 4)
#(revert-auto-beam-setting '(end * * 12 8) 9 8)

%% your new values

#(override-auto-beam-setting '(end 1 8 12 8) 3 8)

#(override-auto-beam-setting '(end 1 8 12 8) 7 8)

#(override-auto-beam-setting '(end 1 8 12 8) 10 8)

If beams are used to indicate melismata in songs, then automatic beaming should be switched
off with \autoBeamQff.

Predefined commands

\autoBeam0Off, \autoBeamOn.

Chapter 9: Changing defaults 218

Commonly tweaked properties

Beaming patterns may be altered with the beatGrouping property,
\time 5/16
\set beatGrouping = #'(2 3)
c8[""(2+3)" c16 c8]
\set beatGrouping = #'(3 2)
c8[""(3+2)" c16 c8]

2+3) (3+2)

C_@)’(:

Bugs

If a score ends while an automatic beam has not been ended and is still accepting notes, this
last beam will not be typeset at all. The same holds polyphonic voices, entered with << ... \\

. >>. If a polyphonic voice ends while an automatic beam is still accepting notes, it is not
typeset.

9.2 Interpretation contexts

This section describes what contexts are, and how to modify them.

9.2.1 Contexts explained

When music is printed, a lot of notational elements must be added to the output. For example,
compare the input and output of the following example:

cis4 cis2. g4

The input is rather sparse, but in the output, bar lines, accidentals, clef, and time signature
are added. LilyPond interprets the input. During this step, the musical information is inspected
in time order, similar to reading a score from left to right. While reading the input, the program
remembers where measure boundaries are, and which pitches require explicit accidentals. This
information can be presented on several levels. For example, the effect of an accidental is limited
to a single staff, while a bar line must be synchronized across the entire score.

Within LilyPond, these rules and bits of information are grouped in Contexts. Some examples
of contexts are Voice, Staff, and Score. They are hierarchical, for example: a Staff can
contain many Voices, and a Score can contain many Staff contexts.

| Score

Staves i o i SN
: . —Voices

e:f f520

Chapter 9: Changing defaults 219

Each context has the responsibility for enforcing some notation rules, creating some nota-
tion objects and maintaining the associated properties. For example, the Voice context may
introduce an accidental and then the Staff context maintains the rule to show or suppress the
accidental for the remainder of the measure. The synchronization of bar lines is handled at
Score context.

However, in some music we may not want the bar lines to be synchronized — consider a
polymetric score in 4/4 and 3/4 time. In such cases, we must modify the default settings of the
Score and Staff contexts.

For very simple scores, contexts are created implicitly, and you need not be aware of them.
For larger pieces, such as anything with more than one staff, they must be created explicitly to
make sure that you get as many staves as you need, and that they are in the correct order. For
typesetting pieces with specialized notation, it can be useful to modify existing or to define new
contexts.

A complete description of all available contexts is in the program reference, see Translation
= Context.

9.2.2 Creating contexts

For scores with only one voice and one staff, contexts are created automatically. For more
complex scores, it is necessary to create them by hand. There are three commands that do this.

e The easiest command is \new, and it also the quickest to type. It is prepended to a music
expression, for example

\new type music expression

where type is a context name (like Staff or Voice). This command creates a new context,
and starts interpreting the music expression with that.

A practical application of \new is a score with many staves. Each part that should be on
its own staff, is preceded with \new Staff.
<<
\new Staff { c4 c }

\new Staff { d4 4 }
>>

> AP

The \new command may also give a name to the context,
\new type = id music

However, this user specified name is only used if there is no other context already earlier
with the same name.

e Like \new, the \context command also directs a music expression to a context object, but
gives the context an explicit name. The syntax is

\context type = id music

This form will search for an existing context of type type called id. If that context does not
exist yet, a new context with the specified name is created. This is useful if the context is
referred to later on. For example, when setting lyrics the melody is in a named context

Chapter 9: Changing defaults 220

\context Voice = "temor" music
so the texts can be properly aligned to its notes,

\new Lyrics \lyricsto "temor" lyrics
Another possible use of named contexts is funneling two different music expressions into
one context. In the following example, articulations and notes are entered separately,

music = { c4 c4 }
arts = { s4-. s4-> }

They are combined by sending both to the same Voice context,

<<
\new Staff \context Voice = "A" \music
\context Voice = "A" \arts
>>
o =

With this mechanism, it is possible to define an Urtext (original edition), with the option
to put several distinct articulations on the same notes.

e The third command for creating contexts is
\context type music

This is similar to \context with = id, but matches any context of type type, regardless of
its given name.

This variant is used with music expressions that can be interpreted at several levels. For
example, the \applyOutput command (see Section 12.5.2 [Running a function on all layout
objects|, page 284). Without an explicit \context, it is usually applied to Voice

\applyOutput #'context #function % apply to Voice
To have it interpreted at the Score or Staff level use these forms

\applyOutput #'Score #function
\applyOutput #'Staff #function

9.2.3 Changing context properties on the fly

Each context can have different properties, variables contained in that context. They can be
changed during the interpretation step. This is achieved by inserting the \set command in the
music,

\set context.prop = #value

For example,

R1x%2
\set Score.skipBars = ##t
R1x2
0 R
o € |

\ U7

5

Chapter 9: Changing defaults 221

This command skips measures that have no notes. The result is that multi-rests are con-
densed. The value assigned is a Scheme object. In this case, it is #t, the boolean True value.

If the context argument is left out, then the current bottom-most context (typically
ChordNames, Voice, or Lyrics) is used. In this example,

c8 ccc
\set autoBeaming = ##f
c8 ccc
()
Z
ANV | | \/ \J J 1J
ry) — r——r——r—r

the context argument to \set is left out, so automatic beaming is switched off in the current
Voice. Note that the bottom-most context does not always contain the property that you wish
to change — for example, attempting to set the skipBars property (of the bottom-most context,
in this case Voice) will have no effect.

R1%2

\set skipBars = ##t
R1%2

P

Contexts are hierarchical, so if a bigger context was specified, for example Staff, then the
change would also apply to all Voices in the current stave. The change is applied ‘on-the-fly’,
during the music, so that the setting only affects the second group of eighth notes.

There is also an \unset command,
\unset context.prop

which removes the definition of prop. This command removes the definition only if it is set in
context, so

\set Staff.autoBeaming = ##f

introduces a property setting at Staff level. The setting also applies to the current Voice.
However,

\unset Voice.autoBeaming

does not have any effect. To cancel this setting, the \unset must be specified on the same level
as the original \set. In other words, undoing the effect of Staff.autoBeaming = ##f requires

\unset Staff.autoBeaming

Like \set, the context argument does not have to be specified for a bottom context, so the
two statements

\set Voice.autoBeaming = ##t
\set autoBeaming = ##t

are equivalent.

Settings that should only apply to a single time-step can be entered with \once, for example
in

Chapter 9: Changing defaults 222

cd
\once \set fontSize = #4.7
c4
cd

the property fontSize is unset automatically after the second note.

A full description of all available context properties is in the program reference, see Transla-
tion = Tunable context properties.

9.2.4 Modifying context plug-ins

Notation contexts (like Score and Staff) not only store properties, they also contain plug-ins
called “engravers” that create notation elements. For example, the Voice context contains a
Note_head_engraver and the Staff context contains a Key_signature_engraver.

For a full a description of each plug-in, see Program reference = Translation = Engravers.
Every context described in Program reference = Translation = Context. lists the engravers
used for that context.

It can be useful to shuffle around these plug-ins. This is done by starting a new context with
\new or \context, and modifying it,

\new context \with {
\consists ...
\consists ...
\remove ...
\remove ...
etc.

..music..

¥

where the ... should be the name of an engraver. Here is a simple example which removes
Time_signature_engraver and Clef_engraver from a Staff context,

<<
\new Staff {
f2 g

}

\new Staff \with {
\remove "Time_signature_engraver"
\remove "Clef_engraver"

o

f2 g2
}
>>

Chapter 9: Changing defaults 223

"4 i
A |
[fan YA W] -~
NIV &
i

|

-~

L4

In the second staff there are no time signature or clef symbols. This is a rather crude method
of making objects disappear since it will affect the entire staff. This method also influences the
spacing, which may or may not be desirable. A more sophisticated method of blanking objects
is shown in Section 5.3 [Common tweaks|, page 54.

The next example shows a practical application. Bar lines and time signatures are normally
synchronized across the score. This is done by the Timing_translator and Default_bar_line_
engraver. This plug-in keeps an administration of time signature, location within the measure,
etc. By moving thes engraver from Score to Staff context, we can have a score where each
staff has its own time signature.

\new Score \with {
\remove "Timing_translator"
\remove "Default_bar_line_engraver"
} <<
\new Staff \with {
\consists "Timing_ translator"
\consists "Default_bar_line_engraver"
A
\time 3/4
cd ccccc
b
\new Staff \with {
\consists "Timing_translator"
\consists "Default_bar_line_engraver"

A
\time 2/4
cd ccccc
}
>>
0
g\
[FanY
sV
[Y) 4 6 6 o o o
0o
N A
[fan Y /1
Y x
[Y) 4 0 6 ¢ ¢ ¢

9.2.5 Layout tunings within contexts

Each context is responsible for creating certain types of graphical objects. The settings used for
printing these objects are also stored by context. By changing these settings, the appearance of
objects can be altered.
The syntax for this is
\override context.name #'property = #value
Here name is the name of a graphical object, like Stem or NoteHead, and property is an

internal variable of the formatting system (‘grob property’ or ‘layout property’). The latter is
a symbol, so it must be quoted. The subsection Section 9.3.1 [Constructing a tweak], page 228

Chapter 9: Changing defaults 224

explains what to fill in for name, property, and value. Here we only discuss the functionality of
this command.

The command
\override Staff.Stem #'thickness = #4.0

makes stems thicker (the default is 1.3, with staff line thickness as a unit). Since the command
specifies Staff as context, it only applies to the current staff. Other staves will keep their
normal appearance. Here we see the command in action:

cd
\override Staff.Stem #'thickness = #4.0
c4
c4
cd
e
ry) — 1 T 1

The \override command changes the definition of the Stem within the current Staff. After
the command is interpreted all stems are thickened.

Analogous to \set, the context argument may be left out, causing the default context Voice
to be used. Adding \once applies the change during one timestep only.

c4
\once \override Stem #'thickness = #4.0
cd
cd

The \override must be done before the object is started. Therefore, when altering Spanner
objects such as slurs or beams, the \override command must be executed at the moment when
the object is created. In this example,

\override Slur #'thickness = #3.0
c8[(¢
\override Beam #'thickness = #0.6
c8 cl)

0

J

NI,
(Y

the slur is fatter but the beam is not. This is because the command for Beam comes after the
Beam is started, so it has no effect.

Analogous to \unset, the \revert command for a context undoes an \override command;
like with \unset, it only affects settings that were made in the same context. In other words,
the \revert in the next example does not do anything.

Chapter 9: Changing defaults 225

\override Voice.Stem #'thickness = #4.0
\revert Staff.Stem #'thickness

Some tweakable options are called “subproperties” and reside inside properties. To tweak
those, use commands of the form

\override context.name #'property #'subproperty = #value
such as

\override Stem #'details #'beamed-lengths = #'(4 4 3)

See also

Internals: OverrideProperty, RevertProperty, PropertySet, Backend, and All layout
objects.

Bugs

The back-end is not very strict in type-checking object properties. Cyclic references in Scheme
values for properties can cause hangs or crashes, or both.

9.2.6 Changing context default settings

The adjustments of the previous subsections (Section 9.2.3 [Changing context properties on the
fly], page 220, Section 9.2.4 [Modifying context plug-ins|, page 222, and Section 9.2.5 [Layout
tunings within contexts|, page 223) can also be entered separately from the music in the \layout
block,

\layout {
\context {
\Staff

\set fontSize = #-2
\override Stem #'thickness = #4.0
\remove "Time_signature_engraver"

}
+

The \Staff command brings in the existing definition of the staff context so that it can be
modified.

The statements

\set fontSize = #-2
\override Stem #'thickness = #4.0
\remove "Time_signature_engraver"

affect all staves in the score. Other contexts can be modified analogously.
The \set keyword is optional within the \layout block, so
\context {

fontSize = #-2
}

will also work.

Bugs

It is not possible to collect context changes in a variable and apply them to a \context definition
by referring to that variable.

Chapter 9: Changing defaults 226

The \RemoveEmptyStaffContext will overwrite your current \Staff settings. If you wish
to change the defaults for a staff which uses \RemoveEmptyStaffContext, you must do so after
calling \RemoveemptyStaffContext, ie

\layout {

\context {
\RemoveEmptyStaffContext

\override Stem #'thickness = #4.0
}
}

9.2.7 Defining new contexts
Specific contexts, like Staff and Voice, are made of simple building blocks. It is possible to
create new types of contexts with different combinations of engraver plug-ins.

The next example shows how to build a different type of Voice context from scratch. It
will be similar to Voice, but only prints centered slash noteheads. It can be used to indicate

improvisation in jazz pieces,

o) ad lib undress
)’ 4 1
:w_w /—/ /7 O
J " while playing :)

These settings are defined within a \context block inside a \layout block,

\layout {
\context {
}
}
In the following discussion, the example input shown should go in place of the ... in the

previous fragment.
First it is necessary to define a name for the new context:
\name ImproVoice

Since it is similar to the Voice, we want commands that work on (existing) Voices to remain
working. This is achieved by giving the new context an alias Voice,

\alias Voice

The context will print notes and instructive texts, so we need to add the engravers which
provide this functionality,

\consists Note_heads_engraver
\consists Text_engraver

but we only need this on the center line,

\consists Pitch_squash_engraver
squashedPosition = #0

The Pitch_squash_engraver modifies note heads (created by Note_heads_engraver) and
sets their vertical position to the value of squashedPosition, in this case 0, the center line.

The notes look like a slash, and have no stem,

Chapter 9: Changing defaults 227

\override NoteHead #'style = #'slash
\override Stem #'transparent = ##t

All these plug-ins have to cooperate, and this is achieved with a special plug-in, which must
be marked with the keyword \type. This should always be Engraver_group,

\type "Engraver_group"
Put together, we get

\context {
\name ImproVoice
\type "Engraver_group"
\consists "Note_heads_engraver"
\consists "Text_engraver"
\consists Pitch_squash_engraver
squashedPosition = #0
\override NoteHead #'style = #'slash
\override Stem #'transparent = ##t
\alias Voice

¥

Contexts form hierarchies. We want to hang the ImproVoice under Staff, just like normal
Voices. Therefore, we modify the Staff definition with the \accepts command,
\context {
\Staff
\accepts ImproVoice
}
The opposite of \accepts is \denies, which is sometimes needed when reusing existing
context definitions.

Putting both into a \layout block, like
\layout {
\context {
\name ImproVoice

}
\context {
\Staff
\accepts "ImproVoice"
}
}
Then the output at the start of this subsection can be entered as
\relative c'' {
a4 d8 bes8
\new ImproVoice {
c4™"ad 1ib" c
c4 c”"undress"
c c_"while playing :)"
}
al
}

9.2.8 Aligning contexts

New contexts may be aligned above or below exisiting contexts. This could be useful in setting
up a vocal staff (Section D.4 [Vocal ensembles]|, page 329) and in ossia,

Chapter 9: Changing defaults 228

A
\J

L

)]]] |
]

o o o o [4 _i_'_i_‘_t

o~

P

9.3 The \override command

In the previous section, we have already touched on a command that changes layout details: the
\override command. In this section, we will look in more detail at how to use the command
in practice. The general syntax of this command is:

\override context.layout_object #'layout_property = #value

This will set the layout_property of the specified layout_object, which is a member of the
context, to the value.

9.3.1 Constructing a tweak
Commands which change output generally look like
\override Voice.Stem #'thickness = #3.0
To construct this tweak we must determine these bits of information:
e the context: here Voice.
e the layout object: here Stem.
e the layout property: here thickness.
e a sensible value: here 3.0.
Some tweakable options are called “subproperties” and reside inside properties. To tweak
those, use commands in the form
\override Stem #'details #'beamed-lengths = #'(4 4 3)

For many properties, regardless of the data type of the property, setting the property to false
(##f) will result in turning it off, causing Lilypond to ignore that property entirely. This is
particularly useful for turning off grob properties which may otherwise be causing problems.

We demonstrate how to glean this information from the notation manual and the program
reference.

9.3.2 Navigating the program reference

Suppose we want to move the fingering indication in the fragment below:
c-2
\stemUp
f

He
Z
ANV

o !

If you visit the documentation on fingering instructions (in Section 6.6.2 [Fingering instruc-
tions], page 96), you will notice:

Chapter 9: Changing defaults 229

See also

Program reference: Fingering.

The programmer’s reference is available as an HTML document. It is highly recommended
that you read it in HTML form, either online or by downloading the HTML documentation.
This section will be much more difficult to understand if you are using the PDF manual.

Follow the link to Fingering. At the top of the page, you will see

Fingering objects are created by: Fingering engraver and New_fingering_
engraver.

By following related links inside the program reference, we can follow the flow of information
within the program:

e Fingering: Fingering objects are created by: Fingering_engraver
e Fingering_engraver: Music types accepted: fingering-event
e fingering-event: Music event type fingering-event is in Music expressions named

FingerEvent

This path goes against the flow of information in the program: it starts from the output,
and ends at the input event. You could also start at an input event, and read with the flow of
information, eventually ending up at the output object(s).

The program reference can also be browsed like a normal document. It contains chapters on
Music definitions on Translation, and the Backend. Every chapter lists all the definitions
used and all properties that may be tuned.

9.3.3 Layout interfaces

The HTML page that we found in the previous section describes the layout object called
Fingering. Such an object is a symbol within the score. It has properties that store num-
bers (like thicknesses and directions), but also pointers to related objects. A layout object is
also called a Grob, which is short for Graphical Object. For more details about Grobs, see
grob-interface.

The page for Fingering lists the definitions for the Fingering object. For example, the page
says
padding (dimension, in staff space):
0.5
which means that the number will be kept at a distance of at least 0.5 of the note head.

Each layout object may have several functions as a notational or typographical element. For
example, the Fingering object has the following aspects

e [ts size is independent of the horizontal spacing, unlike slurs or beams.

e It is a piece of text. Granted, it is usually a very short text.

e That piece of text is typeset with a font, unlike slurs or beams.

e Horizontally, the center of the symbol should be aligned to the center of the notehead.
e Vertically, the symbol is placed next to the note and the staff.

e The vertical position is also coordinated with other superscript and subscript symbols.

Each of these aspects is captured in so-called interfaces, which are listed on the Fingering
page at the bottom

This object supports the following interfaces: item-interface, self-
alignment-interface, side-position-interface, text-interface,
text-script-interface, font-interface, finger-interface, and

grob-interface.

Chapter 9: Changing defaults 230

Clicking any of the links will take you to the page of the respective object interface. Each
interface has a number of properties. Some of them are not user-serviceable (“Internal proper-
ties”), but others can be modified.

We have been talking of the Fingering object, but actually it does not amount to much.
The initialization file (see Section 5.4 [Default files|, page 55) ‘scm/define-grobs.scm’ shows
the soul of the ‘object’,

(Fingering
((padding . 0.5)
(avoid-slur . around)
(slur-padding . 0.2)
(staff-padding . 0.5)
(self-alignment-X . 0)
(self-alignment-Y . 0)
(script-priority . 100)
(stencil . ,ly:text-interface::print)

(direction . ,ly:script-interface::calc-direction)
(font-encoding . fetaNumber)
(font-size . -5) ; don't overlap when next to heads.

(meta . ((class . Item)

(interfaces . (finger-interface
font-interface
text-script-interface
text-interface
side-position-interface
self-alignment-interface
item-interface))))))

As you can see, the Fingering object is nothing more than a bunch of variable settings, and
the webpage in the Program Reference is directly generated from this definition.

9.3.4 Determining the grob property

Recall that we wanted to change the position of the 2 in
c-2
\stemUp
f

P
yi
AV

o !

Since the 2 is vertically positioned next to its note, we have to meddle with the interface
associated with this positioning. This is done using side-position-interface. The page for
this interface says

side-position-interface
Position a victim object (this one) next to other objects (the support). The property
direction signifies where to put the victim object relative to the support (left or
right, up or down?)

Below this description, the variable padding is described as
padding (dimension, in staff space)

Add this much extra space between objects that are next to each other.

Chapter 9: Changing defaults 231

By increasing the value of padding, we can move the fingering away from the notehead. The
following command inserts 3 staff spaces of white between the note and the fingering:

\once \override Voice.Fingering #'padding = #3
Inserting this command before the Fingering object is created, i.e., before c2, yields the
following result:
\once \override Voice.Fingering #'padding = #3
c-2
\stemUp

In this case, the context for this tweak is Voice. This fact can also be deduced from the
program reference, for the page for the Fingering_engraver plug-in says

Fingering_engraver is part of contexts: ... Voice

9.3.5 Objects connected to the input

In some cases, it is possible to take a short-cut for tuning graphical objects. For objects that
result directly from a piece of the input, you can use the \tweak function, for example
<

c

\tweak #'color #red d

g
\tweak #'duration-log #1 a

>4-\tweak #'padding #10 -.

As you can see, properties are set directly in the objects directly, without mentioning the
grob name or context where this should be applied.

This technique only works for objects that are directly connected to an event from the input,
for example

e note heads, caused by chord-pitch (i.e., notes inside a chord).
e articulation signs, caused by articulation instructions.

It notably does not work for stems and accidentals (these are caused by note heads, not by
music events) or clefs (these are not caused by music inputs, but rather by the change of a
property value).

There are very few objects which are directly connected to output. A normal note (like c4)
is not directly connected to output, so

\tweak #'color #red c4
will not change color. See Section 12.3.1 [Displaying music expressions], page 276 for details.

Chapter 9: Changing defaults 232

9.3.6 \set vs. \override

We have seen two methods of changing properties: \set and \override. There are actually
two different kinds of properties.

Contexts can have properties, which are usually named in studlyCaps. They mostly control
the translation from music to notatino, eg. localKeySignature (for determining whether to
print accidentals), measurePosition (for determining when to print a barline). Context prop-
erties can change value over time while interpreting a piece of music; measurePosition is an
obvious example of this. Context properties are modified with \set.

There is a special type of context property: the element description. These properties are
named in StudlyCaps (starting with capital letters). They contain the “default settings” for
said graphical object as an association list. See ‘scm/define-grobs.scm’ to see what kind of
settings there are. Element descriptions may be modified with \override.

\override is actually a shorthand;
\override context.name #'property = #value
is more or less equivalent to

\set context.name #'property = #(cons (cons 'property value) <previous value of con-
text)

The value of context (the alist) is used to initalize the properties of individual grobs. Grobs
also have properties, named in Scheme style, with dashed-words. The values of grob properties
change during the formatting process: formatting basically amounts to computing properties
using callback functions.

fontSize is a special property: it is equivalent to entering \override ... #'font-size for

all pertinent objects. Since this is a common change, the special property (modified with \set)
was created.

9.3.7 Difficult tweaks

There are a few classes of difficult adjustments.

e One type of difficult adjustment is the appearance of spanner objects, such as slur and tie.
Initially, only one of these objects is created, and they can be adjusted with the normal
mechanism. However, in some cases the spanners cross line breaks. If this happens, these
objects are cloned. A separate object is created for every system that it is in. These are
clones of the original object and inherit all properties, including \overrides.

In other words, an \override always affects all pieces of a broken spanner. To change only
one part of a spanner at a line break, it is necessary to hook into the formatting process.
The after-line-breaking callback contains the Scheme procedure that is called after the
line breaks have been determined, and layout objects have been split over different systems.

In the following example, we define a procedure my-callback. This procedure
e determines if we have been split across line breaks

e if yes, retrieves all the split objects

checks if we are the last of the split objects

o if yes, it sets extra-offset.

This procedure is installed into Tie, so the last part of the broken tie is translated up.

#(define (my-callback grob)
(letx (
; have we been split?
(orig (ly:grob-original grob))

Chapter 9: Changing defaults 233

; if yes, get the split pieces (our siblings)
(siblings (if (ly:grob? orig)
(ly:spanner-broken-into orig) '())))

(if (and (>= (length siblings) 2)
(eq? (car (last-pair siblings)) grob))
(ly:grob-set-property! grob 'extra-offset '(-2 . 5)))))

\relative c'' {
\override Tie #'after-line-breaking =
#my-callback
cl 7 \break c2 " ¢

}
g P —
¢
21
e

When applying this trick, the new after-line-breaking callback should also call the
old one after-line-breaking, if there is one. For example, if using this with Hairpin,
ly:hairpin::after-line-breaking should also be called.

e Some objects cannot be changed with \override for technical reasons. Examples of
those are NonMusicalPaperColumn and PaperColumn. They can be changed with the
\outputProperty function, which works similar to \once \override, but uses a different

syntax,
\outputProperty
#"Score.NonMusicalPaperColumn" % Grob name
#'line-break-system-details % Property name

#' ((next-padding . 20)) % Value

Chapter 10: Non-musical notation 234

10 Non-musical notation

This section deals with general lilypond issues, rather than specific notation.

10.1 Input files
The main format of input for LilyPond are text files. By convention, these files end with “.1y"".

10.1.1 File structure (introduction)

A basic example of a lilypond input file is
\version "2.10.10"

\score {
{37 % this is a single music expression;
% all the music goes in here.
\header { }
\layout { }
\midi { }
¥

There are many variations of this basic pattern, but this example serves as a useful starting
place.

The major part of this manual is concerned with entering various forms of music in LilyPond.
However, many music expressions are not valid input on their own, for example, a .1y file
containing only a note

c'4
will result in a parsing error. Instead, music should be inside other expressions, which may be
put in a file by themselves. Such expressions are called toplevel expressions; see Section 10.1.2
[File structure], page 234 for a list of all such expressions.

10.1.2 File structure

A .1y file contains any number of toplevel expressions, where a toplevel expression is one of the
following

e An output definition, such as \paper, \midi, and \layout. Such a definition at the toplevel
changes the default settings for the block entered.

e A direct scheme expression, such as #(set-default-paper-size "a7" 'landscape) or
#(ly:set-option 'point-and-click #f).

e A \header block. This sets the global header block. This is the block containing the
definitions for book-wide settings, like composer, title, etc.

e A \score block. This score will be collected with other toplevel scores, and combined as a
single \book.

This behavior can be changed by setting the variable toplevel-score-handler at toplevel.
The default handler is defined in the init file ‘scm/1ily.scm’.

The \score must begin with a music expression, and may contain only one music expression.

e A \book block logically combines multiple movements (i.e., multiple \score blocks) in one
document. If there are a number of \scores, one output file will be created for each \book
block, in which all corresponding movements are concatenated. The only reason to explicitly
specify \book blocks in a .1y file is if you wish multiple output files from a single input
file. One exception is within lilypond-book documents, where you explicitly have to add a
\book block if you want more than a single \score or \markup in the same example.

This behavior can be changed by setting the variable toplevel-book-handler at toplevel.
The default handler is defined in the init file ‘scm/1ily.scm’.

Chapter 10: Non-musical notation 235

e A compound music expression, such as
{c'44d" e'2}
This will add the piece in a \score and format it in a single book together with all other
toplevel \scores and music expressions. In other words, a file containing only the above
music expression will be translated into
\book {
\score {
\new Staff {
\new Voice {
{c'4d" e'2 }
}
}
}
\layout { }
\header { }
}
This behavior can be changed by setting the variable toplevel-music-handler at toplevel.
The default handler is defined in the init file ‘scm/1ily.scm’.

e A markup text, a verse for example

\markup {
2. The first line verse two.

¥

Markup texts are rendered above, between or below the scores or music expressions, wher-
ever they appear.

e An identifier, such as
foo={cdded?l
This can be used later on in the file by entering \foo. The name of an identifier should
have alphabetic characters only; no numbers, underscores or dashes.
The following example shows three things that may be entered at toplevel

\layout {
% movements are non-justified by default
ragged-right = ##t

}
\header {

title = "Do-re-mi"
}

{c'44d e2}
At any point in a file, any of the following lexical instructions can be entered:
e \version
e \include
e \sourcefilename

e \sourcefileline

10.1.3 A single music expression

A \score must contain a single music expression. However, this music expression may be of
any size. Recall that music expressions may be included inside other expressions to form larger

Chapter 10: Non-musical notation 236

expressions. All of these examples are single music expressions; note the curly braces { } or
angle brackets << >> at the beginning and ending of the music.

{c'd4dc" c" c'"?

r)
\ U7

P

I — —
dessis s

<<
\new Staff { c'4 c' ¢c' c' }
\new Staff { 4'4 4' 4' 4' }
>>

-
N (o]

L 10
L YEE
L 10
L 10

NS U

~
D
o~

N &1

]

\new GrandStaff <<
\new StaffGroup <<
\new Staff { \flute }
\new Staff { \oboe }
>>
\new StaffGroup <<
\new Staff { \violinI }
\new Staff { \violinII }
>>
>>

}
10.1.4 Multiple scores in a book

A document may contain multiple pieces of music and texts. Examples of these are an etude
book, or an orchestral part with multiple movements. Each movement is entered with a \score
block,
\score {
..music..
}

and texts are entered with a \markup block,

\markup {
..text..

}

All the movements and texts which appear in the same .1y file will normally be typeset in
the form of a single output file.

Chapter 10: Non-musical notation 237

\score {

}
\markup {

}

\score {

}

However, if you want multiple output files from the same .1y file, then you can add multiple
\book blocks, where each such \book block will result in a separate output. If you do not specify
any \book block in the file, LilyPond will implicitly treat the full file as a single \book block,
see Section 10.1.2 [File structure], page 234. One important exception is within lilypond-book
documents, where you explicitly have to add a \book block, otherwise only the first \score or
\markup will appear in the output.

The header for each piece of music can be put inside the \score block. The piece name
from the header will be printed before each movement. The title for the entire book can be put
inside the \book, but if it is not present, the \header which is at the top of the file is inserted.

\header {
title = "Eight miniatures"
composer = "Igor Stravinsky"
}
\score {
\header { piece = "Romanze" }
}
\markup {
..text of second verse..
}
\markup {
..text of third verse..
}
\score {

\header { piece = "Menuetto" }

¥

10.1.5 Extracting fragments of notation

It is possible to quote small fragments of a large score directly from the output. This can be
compared to clipping a piece of a paper score with scissors.
This is done by definining the measures that need to be cut out separately. For example,
including the following definition
\layout {
clip-regions
= #(list
(cons
(make-rhythmic-location 5 1 2)
(make-rhythmic-location 7 3 4)))
}
will extract a fragment starting halfway the fifth measure, ending in the seventh measure. The
meaning of 5 1 2 is: after a 1/2 note in measure 5, and 7 3 4 after 3 quarter notes in measure 7.

Chapter 10: Non-musical notation 238

More clip regions can be defined by adding more pairs of rhythmic-locations to the list.

In order to use this feature, LilyPond must be invoked with -dclip-systems. The clips are
output as EPS files, and are converted to PDF and PNG if these formats are switched on as
well.

For more information on output formats, see Section 13.1 [Invoking lilypond|, page 286.

See also

Examples: ‘input/regression//clip-systems.ly’

10.1.6 Including LilyPond files

A large project may be split up into separate files. To refer to another file, use
\include "otherfile.ly"

The line \include "file.ly" is equivalent to pasting the contents of file.ly into the current
file at the place where you have the \include. For example, for a large project you might write
separate files for each instrument part and create a “full score” file which brings together the
individual instrument files.

The initialization of LilyPond is done in a number of files that are included by default when
you start the program, normally transparent to the user. Run lilypond —verbose to see a list of
paths and files that Lily finds.

Files placed in directory ‘PATH/TO/share/lilypond/VERSION/1ly/’ (where VERSION is in
the form “2.6.1”) are on the path and available to \include. Files in the current working
directory are available to \include, but a file of the same name in LilyPond’s installation takes
precedence. Files are available to \include from directories in the search path specified as an
option when invoking 1ilypond --include=DIR which adds DIR to the search path.

The \include statement can use full path information, but with the Unix convention "/"
rather than the DOS/Windows "\". For example, if ‘stuff.ly’ is located one directory higher
than the current working directory, use

\include "../stuff.ly"

10.1.7 Text encoding

LilyPond uses the Pango library to format multi-lingual texts, and does not perform any input-
encoding conversions. This means that any text, be it title, lyric text, or musical instruction
containing non-ASCII characters, must be utf-8. The easiest way to enter such text is by using
a Unicode-aware editor and saving the file with utf-8 encoding. Most popular modern editors
have utf-8 support, for example, vim, Emacs, jEdit, and GEdit do.

To use a Unicode escape sequence, use
#(ly:export (ly:wide-char->utf-8 #x2014))
See also
‘input/regression/utf-8.1y’

10.2 Titles and headers

Almost all printed music includes a title and the composer’s name; some pieces include a lot
more information.

10.2.1 Creating titles

Titles are created for each \score block, as well as for the full input file (or \book block).

The contents of the titles are taken from the \header blocks. The header block for a book
supports the following

Chapter 10: Non-musical notation 239

dedication
The dedicatee of the music, centered at the top of the first page.

title The title of the music, centered just below the dedication.
subtitle Subtitle, centered below the title.

subsubtitle
Subsubtitle, centered below the subtitle.

poet Name of the poet, flush-left below the subtitle.
composer Name of the composer, flush-right below the subtitle.
meter Meter string, flush-left below the poet.

opus Name of the opus, flush-right below the composer.
arranger Name of the arranger, flush-right below the opus.

instrument
Name of the instrument, centered below the arranger. Also centered at the top of
pages (other than the first page).

piece Name of the piece, flush-left below the instrument.

breakbefore
This forces the title to start on a new page (set to ##t or ##f).

copyright
Copyright notice, centered at the bottom of the first page. To insert the copyright
symbol, see Section 10.1.7 [Text encoding], page 238.

tagline Centered at the bottom of the last page.

Here is a demonstration of the fields available. Note that you may use any Section 8.1.4 [Text
markup|, page 170 commands in the header.
\paper {

line-width = 9.0\cm

paper-height = 10.0\cm
}
\book {
\header {
dedication = "dedicated to me"
title = \markup \center-align { "Title first line" "Title second line,
longer" }

subtitle = "the subtitle,"
subsubtitle = #(string-append "subsubtitle LilyPond version "
(1ilypond-version))

poet = "Poet"
composer = \markup \center-align { "composer" \small "(1847-1973)" }
texttranslator = "Text Translator"

meter = \markup { \teeny "m" \tiny "e" \normalsize "t" \large "e" \huge
et }

arranger = \markup { \fontsize #8.5 "a" \fontsize #2.5 "r" \fontsize
#-2.5 "r" \fontsize #-5.3 "a" \fontsize #7.5 "nger" }

instrument = \markup \bold \italic "instrument"

piece = "Piece"

Chapter 10: Non-musical notation

¥

}

\score {
{c1}
\header {
piece = "piecel"
opus = "opusl"
+
}
\markup {
and now. ..
}
\score {
{c1}
\header {
piece = "piece2"
opus = "opus2"
+
}

dedicated to me

Title first line

Title second line,longer
the subtitle,

subsubtitle LilyPond version 2.10.33

Poet instrument composer

(1847-1973)
metel arranger
pi{()ecel opusl

I)
\ U7

CAPN

©-

240

Chapter 10: Non-musical notation 241

2 instrument

and now...

piece2 opus2

o
N |

AP

Music engraving by LilyPond 2.10.33—www.lilypond.org

As demonstrated before, you can use multiple \header blocks. When same fields appear in
different blocks, the latter is used. Here is a short example.

\header {
composer = "Composer"
}
\header {
piece = "Piece"
}
\score {
\new Staff { c'4 }
\header {
piece = "New piece" overwrite previous one
}
+

If you define the \header inside the \score block, then normally only the piece and opus
headers will be printed. Note that the music expression must come before the \header.

\score {
{c4}
\header {
title = "title" Y not printed
piece = "piece"
opus = "opus"
+
+

title

piece opus

O

£\ r £))
[[an YA W] |
ANV |
() &

Chapter 10: Non-musical notation 242

You may change this behavior (and print all the headers when defining \header inside \score)
by using
\paper{
printallheaders=#i#t
}

The default footer is empty, except for the first page, where the copyright field from \header
is inserted, and the last page, where tagline from \header is added. The default tagline is
“Music engraving by LilyPond (version)”.!

Headers may be completely removed by setting them to false.

\header {
tagline = ##f
composer = ##f

}
10.2.2 Custom titles

A more advanced option is to change the definitions of the following variables in the \paper
block. The init file ‘1y/titling-init.1ly’ lists the default layout.

bookTitleMarkup
This is the title added at the top of the entire output document. Typically, it has
the composer and the title of the piece

scoreTitleMarkup
This is the title put over a \score block. Typically, it has the name of the movement
(piece field).

oddHeaderMarkup
This is the page header for odd-numbered pages.

evenHeaderMarkup
This is the page header for even-numbered pages. If unspecified, the odd header is
used instead.

By default, headers are defined such that the page number is on the outside edge,
and the instrument is centered.

oddFooterMarkup
This is the page footer for odd-numbered pages.

evenFooterMarkup
This is the page footer for even-numbered pages. If unspecified, the odd header is
used instead.

By default, the footer has the copyright notice on the first, and the tagline on the
last page.

The following definition will put the title flush left, and the composer flush right on a single
line.
\paper {
bookTitleMarkup = \markup {
\fill-line {
\fromproperty #'header:title
\fromproperty #'header:composer
}
+
}

1 Nicely printed parts are good PR for us, so please leave the tagline if you can.

Chapter 10: Non-musical notation 243

10.3 MIDI output

MIDI (Musical Instrument Digital Interface) is a standard for connecting and controlling digital
instruments. A MIDI file is a series of notes in a number of tracks. It is not an actual sound
file; you need special software to translate between the series of notes and actual sounds.

Pieces of music can be converted to MIDI files, so you can listen to what was entered. This is
convenient for checking the music; octaves that are off or accidentals that were mistyped stand
out very much when listening to the MIDI output.

Bugs
Many musically interesting effects, such as swing, articulation, slurring, etc., are not translated
to midi.

The midi output allocates a channel for each staff, and one for global settings. Therefore the
midi file should not have more than 15 staves (or 14 if you do not use drums). Other staves will
remain silent.

Not all midi players correctly handle tempo changes in the midi output. Players that are
known to work include timidity.

10.3.1 Creating MIDI files

To create a MIDI from a music piece of music, add a \midi block to a score, for example,

\score {
...music...
\midi {
\context {
\Score
tempoWholesPerMinute = #(ly:make-moment 72 4)
+
}
}

The tempo can be specified using the \tempo command within the actual music, see Sec-
tion 8.2.2 [Metronome marks|, page 186. An alternative, which does not result in a metronome
mark in the printed score, is shown in the example above. In this example the tempo of quarter
notes is set to 72 beats per minute. This kind of tempo specification can not take dotted note
lengths as an argument. In this case, break the dotted notes into smaller units. For example, a
tempo of 90 dotted quarter notes per minute can be specified as 270 eighth notes per minute

tempoWholesPerMinute = #(ly:make-moment 270 8)

If there is a \midi command in a \score, only MIDI will be produced. When notation is
needed too, a \layout block must be added

\score {
...music...
\midi { }
\layout { }

}

Ties, dynamics, and tempo changes are interpreted. Dynamic marks, crescendi and de-
crescendi translate into MIDI volume levels. Dynamic marks translate to a fixed fraction of the
available MIDI volume range, crescendi and decrescendi make the volume vary linearly between
their two extremes. The fractions can be adjusted by dynamicAbsoluteVolumeFunction in
Voice context. For each type of MIDI instrument, a volume range can be defined. This gives
a basic equalizer control, which can enhance the quality of the MIDI output remarkably. The
equalizer can be controlled by setting instrumentEqualizer, or by setting

http://timidity.sourceforge.net/

Chapter 10: Non-musical notation 244

\set Staff.midiMinimumVolume = #0.2
\set Staff.midiMaximumVolume = #0.8

To remove dynamics from the MIDI output, insert the following lines in the \midi{} section.
\midi {
\context {
\Voice
\remove "Dynamic_performer"

}
+

Bugs

Unterminated (de)crescendos will not render properly in the midi file, resulting in silent passages
of music. The workaround is to explicitly terminate the (de)crescendo. For example,

{ a\< b c d\f }
will not work properly but
{ a\< b c d\!\f }

will.

10.3.2 MIDI block

The MIDI block is analogous to the layout block, but it is somewhat simpler. The \midi block
is similar to \layout. It can contain context definitions.

Context definitions follow precisely the same syntax as within the \layout block. Translation
modules for sound are called performers. The contexts for MIDI output are defined in ‘ly/
performer-init.ly’.

10.3.3 MIDI instrument names

The MIDI instrument name is set by the Staff.midiInstrument property. The instrument
name should be chosen from the list in Section C.2 [MIDI instruments|, page 314.

\set Staff.midiInstrument = "glockenspiel"
...notes. ..

If the selected instrument does not exactly match an instrument from the list of MIDI in-
struments, the Grand Piano ("acoustic grand") instrument is used.

10.4 Displaying LilyPond notation

Displaying a music expression in LilyPond notation can be done using the music function
\displayLilyMusic. For example,

{
\displayLilyMusic \transpose c a, { c e g a bes }
}

will display
{ a, cis e fis g }

By default, LilyPond will print these messages to the console along with all the other mes-
sages. To split up these messages and save the results of \display{STUFF}, redirect the output
to a file.

lilypond file.ly >display.txt

Chapter 10: Non-musical notation 245

10.5 Skipping corrected music

When entering or copying music, usually only the music near the end (where you are adding
notes) is interesting to view and correct. To speed up this correction process, it is possible to
skip typesetting of all but the last few measures. This is achieved by putting

showLastLength = R1%5

\score { ... }

in your source file. This will render only the last 5 measures (assuming 4/4 time signature) of
every \score in the input file. For longer pieces, rendering only a small part is often an order
of magnitude quicker than rendering it completely

Skipping parts of a score can be controlled in a more fine-grained fashion with the property
Score.skipTypesetting. When it is set, no typesetting is performed at all.

This property is also used to control output to the MIDI file. Note that it skips all events,
including tempo and instrument changes. You have been warned.

\relative c'' {
c8 d

\set Score.skipTypesetting = ##t
eeeeececee
\set Score.skipTypesetting = ##f

cdbbesagc2}’

N
ot 7z
3 | d—bd—j_‘
7 —

A2V
U r -

-

In polyphonic music, Score.skipTypesetting will affect all voices and staves, saving even
more time.

Chapter 11: Spacing issues 246

11 Spacing issues

The global paper layout is determined by three factors: the page layout, the line breaks, and
the spacing. These all influence each other. The choice of spacing determines how densely each
system of music is set. This influences where line breaks are chosen, and thus ultimately, how
many pages a piece of music takes.

Globally speaking, this procedure happens in four steps: first, flexible distances (“springs”)
are chosen, based on durations. All possible line breaking combinations are tried, and a “bad-
ness” score is calculated for each. Then the height of each possible system is estimated. Finally,
a page breaking and line breaking combination is chosen so that neither the horizontal nor the
vertical spacing is too cramped or stretched.

11.1 Paper and pages

This section deals with the boundaries that define the area that music can be printed inside.

11.1.1 Paper size

To change the paper size, there are two commands,
#(set-default-paper-size "ad")
\paper {
#(set-paper-size "a4")
}

The first command sets the size of all pages. The second command sets the size of the pages
that the \paper block applies to — if the \paper block is at the top of the file, then it will apply
to all pages. If the \paper block is inside a \book, then the paper size will only apply to that
book.

Support for the following paper sizes are included by default, a6, a5, a4, a3, legal, letter,
11x17 (also known as tabloid).

Extra sizes may be added by editing the definition for paper-alist in the initialization file
‘scm/paper.scm’.

If the symbol landscape is supplied as an argument to set-default-paper-size, the pages
will be rotated by 90 degrees, and wider line widths will be set correspondingly.

#(set-default-paper-size "a6" 'landscape)

Setting the paper size will adjust a number of \paper variables (such as margins). To use a
particular paper size with altered \paper variables, set the paper size before setting the variables.

11.1.2 Page formatting

LilyPond will do page layout, set margins, and add headers and footers to each page.
The default layout responds to the following settings in the \paper block.
first-page—-number
The value of the page number of the first page. Default is 1.
print-first-page-number
If set to true, will print the page number in the first page. Default is
false.

print-page-number
If set to false, page numbers will not be printed. Default is true.
paper-width
The width of the page. The default is taken from the current paper
size, see Section 11.1.1 [Paper size], page 246.

Chapter 11: Spacing issues 247

paper-height
The height of the page. The default is taken from the current paper
size, see Section 11.1.1 [Paper size], page 246.

top-margin
Margin between header and top of the page. Default is bmm.

bottom-margin
Margin between footer and bottom of the page. Default is 6mm.

left-margin
Margin between the left side of the page and the beginning of the music.
Unset by default, which means that the margins is determined based on
the paper-width and line-width to center the score on the paper.

line-width
The length of the systems. Default is paper-width minus 20mm.

head-separation
Distance between the top-most music system and the page header. De-
fault is 4mm.

foot-separation
Distance between the bottom-most music system and the page footer.
Default is 4mm.

page-top-space
Distance from the top of the printable area to the center of the first
staff. This only works for staves which are vertically small. Big staves
are set with the top of their bounding box aligned to the top of the
printable area. Default is 12mm.

ragged-bottom
If set to true, systems will not be spread vertically across the page. This
does not affect the last page. Default is false.

This should be set to true for pieces that have only two or three systems
per page, for example orchestral scores.

ragged-last-bottom
If set to false, systems will be spread vertically to fill the last page.
Default is true.

Pieces that amply fill two pages or more should have this set to true.

system-count
This variable, if set, specifies into how many lines a score should be
broken. Unset by default.

between-system—space
This dimensions determines the distance between systems. It is the
ideal distance between the center of the bottom staff of one system and
the center of the top staff of the next system. Default is 20mm.

Increasing this will provide a more even appearance of the page at the
cost of using more vertical space.

between-system-padding
This dimension is the minimum amount of white space that will always
be present between the bottom-most symbol of one system, and the
top-most of the next system. Default is 4mm.

Chapter 11: Spacing issues

Increasing this will put systems whose bounding boxes almost touch
farther apart.

horizontal-shift
All systems (including titles and system separators) are shifted by this
amount to the right. Page markup, such as headers and footers are
not affected by this. The purpose of this variable is to make space for
instrument names at the left. Default is 0.

after-title-space
Amount of space between the title and the first system. Default is 5mm.

before-title-space
Amount of space between the last system of the previous piece and the
title of the next. Default is 10mm.

between-title-space
Amount of space between consecutive titles (e.g., the title of the book
and the title of a piece). Default is 2mm.

printallheaders
Setting this to #t will print all headers for each \score in the output.
Normally only the piece and opus \headers are printed.

systemSeparatorMarkup
This contains a markup object, which will be inserted between systems.
This is often used for orchestral scores. Unset by default.

The markup command \slashSeparator is provided as a sensible de-
fault, for example

248

Chapter 11: Spacing issues

Sa0 puodA[IMmMMmM—eE 0T ' PUOJAIIT Aq SuraeiSus OISN\

o W\

blank-page-force
The penalty for having a blank page in the middle of a score. This is
not used by ly:optimal-breaking since it will never consider blank
pages in the middle of a score. Default value is 10.

blank-last-page-force
The penalty for ending the score on an odd-numbered page. Default
value is 0.

page-spacing-weight
The relative importance of page (vertical) spacing and line (horizontal)
spacing. High values will make page spacing more important. Default
value is 10.

auto-first-page-number
The page breaking algorithm is affected by the first page number being
odd or even. If this variable is set to #t, the page breaking algorithm
will decide whether to start with an odd or even number. This will
result in the first page number remaining as is or being increased by
one.

Example:

\paper{
paper-width = 2\cm
top-margin = 3\cm

249

Chapter 11: Spacing issues 250

bottom-margin = 3\cm
ragged-last-bottom = ##t
}

You can also define these values in Scheme. In that case mm, in, pt, and cm are variables
defined in ‘paper-defaults.ly’ with values in millimeters. That is why the value must be
multiplied in the example

\paper {
#(define bottom-margin (* 2 cm))
}

The header and footer are created by the functions make-footer and make-header, defined
in \paper. The default implementations are in ‘ly/paper-defaults.ly’ and ‘ly/titling-init
ly'.

The page layout itself is done by two functions in the \paper block, page-music-height
and page-make-stencil. The former tells the line-breaking algorithm how much space can be
spent on a page, the latter creates the actual page given the system to put on it.

Bugs
The option right-margin is defined but doesn’t set the right margin yet. The value for the right
margin has to be defined adjusting the values of left-margin and line-width.

The default page header puts the page number and the instrument field from the \header
block on a line.

The titles (from the \header{} section) are treated as a system, so ragged-bottom and
ragged-last-bottom will add space between the titles and the first system of the score.

11.2 Music layout

11.2.1 Setting the staff size
To set the staff size globally for all scores in a file (or in a book block, to be precise), use
set-global-staff-size.
#(set-global-staff-size 14)
This sets the global default size to 14pt staff height and scales all fonts accordingly.
To set the staff size individually for each score, use
\score{
\layout{
#(layout-set-staff-size 15)

}
}

The Feta font provides musical symbols at eight different sizes. Each font is tuned for a
different staff size: at a smaller size the font becomes heavier, to match the relatively heavier
staff lines. The recommended font sizes are listed in the following table:

font name staff height (pt) staff height (mm) use

fetall 11.22 3.9 pocket scores
fetal3 12.60 4.4

fetald 14.14 5.0

fetal6 15.87 5.6

Chapter 11: Spacing issues 251

fetal8 17.82 6.3 song books
feta20 20 7.0 standard parts
feta23 22.45 7.9

feta26 25.2 8.9

These fonts are available in any sizes. The context property fontSize and the layout property
staff-space (in StaffSymbol) can be used to tune the size for individual staves. The sizes of
individual staves are relative to the global size.

See also
This manual: Section 8.4.8 [Selecting notation font size], page 207.

11.2.2 Score layout

While \paper contains settings that relate to the page formatting of the whole document,
\layout contains settings for score-specific layout.

\layout {
indent = 2.0\cm
\context { \Staff
\override VerticalAxisGroup #'minimum-Y-extent = #'(-6 . 6)
}
\context { \Voice
\override TextScript #'padding = #1.0
\override Glissando #'thickness = #3
}
}

See also

This manual: Section 9.2.6 [Changing context default settings|, page 225

11.3 Breaks

11.3.1 Line breaking

Line breaks are normally computed automatically. They are chosen so that lines look neither
cramped nor loose, and that consecutive lines have similar density.

Occasionally you might want to override the automatic breaks; you can do this by specifying
\break. This will force a line break at this point. Line breaks can only occur at places where
there are bar lines. If you want to have a line break where there is no bar line, you can force an
invisible bar line by entering \bar "". Similarly, \noBreak forbids a line break at a point.

For line breaks at regular intervals use \break separated by skips and repeated with \repeat:

<< \repeat unfold 7 {
s1 \noBreak si1 \noBreak
s1 \noBreak s1 \break }
the real music
>>

This makes the following 28 measures (assuming 4/4 time) be broken every 4 measures, and
only there.

Chapter 11: Spacing issues 252

Predefined commands
\break, and \noBreak.

See also
Internals: LineBreakEvent.

A linebreaking configuration can now be saved as a .ly file automatically. This allows
vertical alignments to be stretched to fit pages in a second formatting run. This is fairly new
and complicated.

Bugs

Line breaks can only occur if there is a ‘proper’ bar line. A note which is hanging over a bar
line is not proper, such as

c4d c2 c2 \break % this does nothing

c2 c4 | % a break here would work
c4 c2 c4 ~ \break % as does this break
c4d c2 c4

0
/N G Al I A o N R

]
] I I
I

To allow line breaks on such bar lines, the Forbid_line_break_engraver can be removed
from Voice context, like so

\new Voice \with {
\remove "Forbid_line_break_engraver"

P A
cd c2 c2 \break Y% now the break is allowed
c2 c4
}
7%3?
7 7 7
ANV = | F

e) | |

11.3.2 Page breaking

The default page breaking may be overriden by inserting \pageBreak or \noPageBreak com-
mands. These commands are analogous to \break and \noBreak. They should be inserted at
a bar line. These commands force and forbid a page-break from happening. Of course, the
\pageBreak command also forces a line break.

Page breaks are computed by the page-breaking function. LilyPond provides two algorithms
for computing page breaks, 1y:optimal-breaking and ly:page-turn-breaking. The default
is 1y:optimal-breaking, but the value can be changed in the \paper block:

Chapter 11: Spacing issues 253

\paper{
#(define page-breaking ly:page-turn-breaking)
}

The old page breaking algorithm is called optimal-page-breaks. If you are having trouble
with the new page breakers, you can enable the old one as a workaround.

Predefined commands

\pageBreak \noPageBreak

11.3.3 Optimal page breaking

The 1y:optimal-breaking function is LilyPond’s default method of determining page breaks.
It attempts to find a page breaking that minimizes cramping and stretching, both horizontally
and vertically. Unlike 1y:page-turn-breaking, it has no concept of page turns.

11.3.4 Optimal page turning

Often it is necessary to find a page breaking configuration so that there is a rest at the end of
every second page. This way, the musician can turn the page without having to miss notes. The
ly:page-turn-breaking function attempts to find a page breaking minimizing cramping and
stretching, but with the additional restriction that it is only allowed to introduce page turns in
specified places.

There are two steps to using this page breaking function. First, you must enable it in the
\paper block. Then, you must tell the function where you would like to allow page breaks.

There are two ways to achieve the second step. First, you can specify each potential page
turn manually, by inserting \allowPageTurn into your input file at the appropriate places.

If this is too tedious, you can add a Page_turn_engraver to a Staff or Voice context. The
Page_turn_engraver will scan the context for sections without notes (note that it does not
scan for rests; it scans for the absence of notes. This is so that single-staff polyphony with rests
in one of the parts does not throw off the Page_turn_engraver). When it finds a sufficiently
long section without notes, the Page_turn_engraver will insert an \allowPageTurn at the final
barline in that section, unless there is a ‘special’ barline (such as a double bar), in which case
the \allowPageTurn will be inserted at the final ‘special’ barline in the section.

The Page_turn_engraver reads the context property minimumPageTurnLength to determine
how long a note-free section must be before a page turn is considered. The default value for
minimumPageTurnLength is #(ly:make-moment 1 1). If you want to disable page turns, you
can set it to something very large.

\new Staff \with { \consists "Page_turn_engraver" }

{
ad b cd |
R1 | % a page turn will be allowed here
ad b cd |
\set Staff.minimumPageTurnLength = #(ly:make-moment 5 2)
R1 | % a page turn will not be allowed here
a4 b r2 |
R1%2 | % a page turn will be allowed here
al
}

The Page_turn_engraver detects volta repeats. It will only allow a page turn during the
repeat if there is enough time at the beginning and end of the repeat to turn the page back.
The Page_turn_engraver can also disable page turns if the repeat is very short. If you set the

Chapter 11: Spacing issues 254

context property minimumRepeatLengthForPageTurn then the Page_turn_engraver will only
allow turns in repeats whose duration is longer than this value.

Bugs

There should only be one Page_turn_engraver in a score. If there is more than one, they will
interfere with each other.

11.3.5 Explicit breaks

Lily sometimes rejects explicit \break and \pageBreak commands. There are two commands
to override this behavior:
\override NonMusicalPaperColumn #'line-break-permission = ##f
\override NonMusicalPaperColumn #'page-break-permission = ##f
When line-break-permission is overriden to false, Lily will insert line breaks at explicit
\break commands and nowhere else. When page-break-permission is overriden to false, Lily
will insert page breaks at explicit \pageBreak commands and nowhere else.
\paper {
indent = #0
ragged-right = ##t
ragged-bottom = ##t

}
\score {
\new Score \with {
\override NonMusicalPaperColumn #'line-break-permission = ##f
\override NonMusicalPaperColumn #'page-break-permission = ##f
A
\new Staff {
\repeat unfold 2 { c'8 ¢'8 c¢'8 ¢'8 } \break
\repeat unfold 4 { ¢'8 ¢c'8 ¢'8 ¢'8 } \break
\repeat unfold 6 { ¢'8 ¢'8 ¢'8 c'8 } \break
\repeat unfold 8 { ¢'8 ¢'8 ¢'8 c'8 } \pageBreak
\repeat unfold 8 { ¢'8 ¢'8 ¢'8 c'8 } \break
\repeat unfold 6 { c'8 ¢'8 c'8 ¢'8 } \break
\repeat unfold 4 { ¢'8 ¢c'8 ¢'8 ¢'8 } \break
\repeat unfold 2 { ¢'8 ¢'8 ¢c'8 ¢'8 }
}
}
}
o)
)’ 4
'I\m{‘llllllll
NV T 1 T T T T 7T
o 4ddoddddddd
-0
e e e e e e e e e
e dJesdddddd ddsdddddd
4

G e

YIS
LY
LY
LY
{108
LY
LY
LY
108
1
LY
LY
L YEB
¢
LY
LY
L YEE
1
1
LY
L YEE
LYl
¢
LY

Chapter 11: Spacing issues

0

S&y

dessesss

L 1R
L Yo
L Yo
L YE
L YR
L Yo
L Yo
¢

YIS
LY
LY
LY
YIS
LY
LY
LY

LY
YIS
LYl
LY
LY

[
-

LYl

|
-

11.3.6 Using an extra voice for breaks

Line- and page-breaking information usually appears within note entry directly.

\new Score {
\new Staff {

\repeat unfold 2 { c'4 c'4 c'4 c'4 }

\break

\repeat unfold 3 { c¢'4 c'4 c'4 c'4 }

}
}

255

This makes \break and \pageBreak commands easy to enter but mixes music entry with
information that specifies how music should lay out on the page. You can keep music entry
and line- and page-breaking information in two separate places by introducing an extra voice to
contain the breaks. This extra voice contains only skips together with \break, pageBreak and

other breaking layout information.

\new Score {
\new Staff <<
\new Voice {

s1 * 2 \break
sl * 3 \break
sl * 6 \break
sl * 5 \break
}

\new Voice {

\repeat
\repeat
\repeat
\repeat

unfold 2
unfold 3
unfold 6
unfold 5

{
{
{
{

O o0 o0 o0

NI RN

Chapter 11: Spacing issues 256

>>

N &1

P

P>

G

Jz et

This pattern becomes especially helpful when overriding 1ine-break-system-details and
the other useful but long properties of NonMusicalPaperColumnGrob, as explained in Sec-
tion 11.4 [Vertical spacing], page 257.

\new Score {
\new Staff <<
\new Voice {

\overrideProperty "Score.NonMusicalPaperColumn"
#'line-break-system-details #'((Y-offset . 0))
sl * 2 \break

\overrideProperty "Score.NonMusicalPaperColumn"
#'line-break-system-details #'((Y-offset . 35))
sl * 3 \break

\overrideProperty "Score.NonMusicalPaperColumn"
#'line-break-system-details #'((Y-offset . 70))
sl * 6 \break

\overrideProperty "Score.NonMusicalPaperColumn"
#'line-break-system-details #'((Y-offset . 105))
sl * 5 \break
+
\new Voice {
\repeat unfold 2 {
\repeat unfold 3 {
6 {
5 {

NN NN

\repeat unfold
\repeat unfold

o o o0 o0

Chapter 11: Spacing issues 257

}
>>
}

()

)" 4

4\ r £)

[[an YA O]

ANV

oJ > > > < > > > >

3

0

/\

[[an)

SY

dJ @ & & & & & & & - o o &
50

)" 4

4\

<D

e o666 0000 6¢ddd 0000 ¢6ddd o0
12

0

I\

&
dJ o ¢ 6 ¢ ¢ 0 6 o ¢ o0 ¢ o ¢ o ¢ e ¢ ¢ o 4

11.4 Vertical spacing

Vertical spacing is controlled by three things: the amount of space available (i.e., paper size and
margins), the amount of space between systems, and the amount of space between staves inside
a system.

11.4.1 Vertical spacing inside a system

The height of each system is determined automatically. To prevent staves from bumping into
each other, some minimum distances are set. By changing these, you can put staves closer
together. This reduces the amount of space each system requires, and may result in having
more systems per page.

Normally staves are stacked vertically. To make staves maintain a distance, their verti-
cal size is padded. This is done with the property minimum-Y-extent. When applied to a
VerticalAxisGroup, it controls the size of a horizontal line, such as a staff or a line of lyrics.
minimum-Y-extent takes a pair of numbers, so if you want to make it smaller than its default
#'(-4 . 4) then you could set

\override Staff.VerticalAxisGroup #'minimum-Y-extent = #'(-3 . 3)
This sets the vertical size of the current staff to 3 staff spaces on either side of the center staff
line. The value (-3 . 3) is interpreted as an interval, where the center line is the 0, so the first
number is generally negative. The numbers need not match; for example, the staff can be made
larger at the bottom by setting it to (-6 . 4).

See also

Internals: Vertical alignment of staves is handled by the VerticalAlignment object. The
context parameters specifying the vertical extent are described in connection with the Axis_
group_engraver.

Example files: ‘input/regression//page-spacing.ly’, ‘input/regression//
alignment-vertical-spacing.ly’.

Chapter 11: Spacing issues 258

11.4.2 Vertical spacing of piano staves

The distance between staves of a PianoStaff cannot be computed during formatting. Rather,
to make cross-staff beaming work correctly, that distance has to be fixed beforehand.

The distance of staves in a PianoStaff is set with the forced-distance property of the
VerticalAlignment object, created in PianoStaff

It can be adjusted as follows

\new PianoStaff \with {
\override VerticalAlignment #'forced-distance = #7

P A

}

This would bring the staves together at a distance of 7 staff spaces, measured from the center
line of each staff.

The difference is demonstrated in the following example,

\relative c'' <<
\new PianoStaff \with {
\override VerticalAlignment #'forced-distance = #7
} <<
\new Staff { c1 }
\new Staff { ¢ }
>>
\new PianoStaff <<
\new Staff { c }
\new Staff { c }
>>
>>

o O

(o O

AN CAPRBP

y £} [@)
\ U
)
)" 4
7\ y £} [@)
\HD—
[Y)
See also

Example files: ‘input/regression//alignment-vertical-spacing.ly’.

11.4.3 Vertical spacing between systems
Space between systems are controlled by four \paper variables,

\paper {

between-system-space = 1.5\cm

Chapter 11: Spacing issues 259

between-system-padding = #1
ragged-bottom=##f
ragged-last-bottom=##f

3

11.4.4 Explicit staff and system positioning

One way to understand the VerticalAxisGroup and \paper settings explained in the previous
two sections is as a collection of different settings that primarily concern the amount of vertical
padding different staves and systems running down the page.

It is possible to approach vertical spacing in a different way using NonMusicalPaperColumn
#'line-break-system-details. Where VerticalAxisGroup and \paper settings specify ver-
tical padding, NonMusicalPaperColumn #'line-break-system-details specifies exact vertical
positions on the page.

NonMusicalPaperColumn #'line-break-system-details accepts an associative list of five
different settings:

e X-offset

e Y-offset

e alignment-offsets

e alignment-extra-space

e fixed-alignment-extra-space

Grob overrides, including the overrides for NonMusicalPaperColumn below, can occur in any
of three different places in an input file:

e in the middle of note entry directly

e in a \context block

e in the \with block

When we override NonMusicalPaperColumn, we use the usual \override command
in \context blocks and in the \with block. On the other hand, when we override
NonMusicalPaperColumn in the middle of note entry, use the special \overrideProperty

command. Here are some example NonMusicalPaperColumn overrides with the special
\overrideProperty command:

\overrideProperty NonMusicalPaperColumn
#'line-break-system-details #'((X-offset . 20))

\overrideProperty NonMusicalPaperColumn
#'line-break-system-details #'((Y-offset . 40))

\overrideProperty NonMusicalPaperColumn
#'line-break-system-details #'((X-offset . 20) (Y-offset . 40))

\override NonMusicalPaperColumn
#'line-break-system-details #'((alignment-offsets . (0 -15)))

\override NonMusicalPaperColumn
#'line-break-system-details #'((X-offset . 20) (Y-offset . 40)
(alignment-offsets . (0 -15)))

To understand how each of these different settings work, we begin by looking at an example
that includes no overrides at all.

Chapter 11: Spacing issues 260

Q

4\ f £)

U

ANV,

[Y) ¢ 0 00 o0 6066 o 0909
Q

4\ r £)

AU

T
.
.
.
.
|

'S

DO P

¢
)
¢
¢
¢
)
)
¢
)
¢
)
¢

3

]
.
.
.
.
.
|

K

DO O

¢
)
¢
¢
)
)
)
¢
)
¢
)
¢

3

4
4
.
4
4
.
:
4'

[
=]

O O

L 10
[
L 10
L 10
L 10
L YEE
L 10
L 10
LY
4
[
LY

3

)
.
.
.
.

-
w

DO SO

¢
¢
¢
Y
¢
‘
¢
4
¢
‘
¢
‘
¢
‘
¢
‘
Y
¢
‘
¢

)

.
.
.
.
.
.
.
.

I

=
Qo

DO SO

.
.
.
.

3

]

This score isolates line- and page-breaking information in a dedicated voice. This technique of
creating a breaks voice will help keep layout separate from music entry as our example becomes
more complicated. See Section 11.3.6 [Using an extra voice for breaks|, page 255.

Explicit \breaks evenly divide the music into six measures per line. Vertical spacing results
from LilyPond’s defaults. To set the vertical startpoint of each system explicitly, we can set the

261

o o O @

o @

r £}

'lf\\\l/
JJ
0)

o o oo O 0 @@

r)
A §

Y-offset pair in the line-break-system-details attribute of the NonMusicalPaperColumn

Chapter 11: Spacing issues
grob:

e @ @ @

lly

e 6 0 66 o606 o094

o @0 @ @ @ @ @

0

@

¢ 6 0 66 60 ¢4

@ @& @ @ o @ @ B

e o0 64 o 6o ¢4

10()

T e @ @

@ @& @ @ o @ @ e @ @

¢ o066 o006 o006 o0 o999

£\
[£anY
G

13()

e ¢ o 44

18()

Chapter 11: Spacing issues 262

Note that 1ine-break-system-details takes an associative list of potentially many values,
but that we set only one value here. Note, too, that the Y-offset property here determines the
exact vertical position on the page at which each new system will render.

Now that we have set the vertical startpoint of each system explicitly, we can also set the
vertical startpoint of each staff within each system manually. We do this using the alignment-
offsets subproperty of line-break-system-details.

N (o

G e
-

DO

~
D
o~

N &1

.
.
.

'S

DO SO

.
.
.
.
.
]
]
.
]
.
]
.

)

)
.
.
.
:
.

3

P>

¢
)
¢
¢
¢
)
)
¢
)
¢
)
¢

j&;kb
.
.
.
.
.
.
.
.

[
=]

NS O

¢
‘.
‘
[
‘
]
]
Y
]
[
¢
‘

3

)
.
.
ﬂ
.

Chapter 11: Spacing issues 263

>

L YH
LY
L 10
LY
LY
L YEE
L 10
