00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00026 #include "dsputil.h"
00027 #include <math.h>
00028 #include <unistd.h>
00029 #include <sys/time.h>
00030 #include <stdlib.h>
00031 #include <string.h>
00032
00033 #undef exit
00034 #undef random
00035
00036 int mm_flags;
00037
00038
00039
00040 #define MUL16(a,b) ((a) * (b))
00041
00042 #define CMAC(pre, pim, are, aim, bre, bim) \
00043 {\
00044 pre += (MUL16(are, bre) - MUL16(aim, bim));\
00045 pim += (MUL16(are, bim) + MUL16(bre, aim));\
00046 }
00047
00048 FFTComplex *exptab;
00049
00050 void fft_ref_init(int nbits, int inverse)
00051 {
00052 int n, i;
00053 double c1, s1, alpha;
00054
00055 n = 1 << nbits;
00056 exptab = av_malloc((n / 2) * sizeof(FFTComplex));
00057
00058 for(i=0;i<(n/2);i++) {
00059 alpha = 2 * M_PI * (float)i / (float)n;
00060 c1 = cos(alpha);
00061 s1 = sin(alpha);
00062 if (!inverse)
00063 s1 = -s1;
00064 exptab[i].re = c1;
00065 exptab[i].im = s1;
00066 }
00067 }
00068
00069 void fft_ref(FFTComplex *tabr, FFTComplex *tab, int nbits)
00070 {
00071 int n, i, j, k, n2;
00072 double tmp_re, tmp_im, s, c;
00073 FFTComplex *q;
00074
00075 n = 1 << nbits;
00076 n2 = n >> 1;
00077 for(i=0;i<n;i++) {
00078 tmp_re = 0;
00079 tmp_im = 0;
00080 q = tab;
00081 for(j=0;j<n;j++) {
00082 k = (i * j) & (n - 1);
00083 if (k >= n2) {
00084 c = -exptab[k - n2].re;
00085 s = -exptab[k - n2].im;
00086 } else {
00087 c = exptab[k].re;
00088 s = exptab[k].im;
00089 }
00090 CMAC(tmp_re, tmp_im, c, s, q->re, q->im);
00091 q++;
00092 }
00093 tabr[i].re = tmp_re;
00094 tabr[i].im = tmp_im;
00095 }
00096 }
00097
00098 void imdct_ref(float *out, float *in, int nbits)
00099 {
00100 int n = 1<<nbits;
00101 int k, i, a;
00102 double sum, f;
00103
00104 for(i=0;i<n;i++) {
00105 sum = 0;
00106 for(k=0;k<n/2;k++) {
00107 a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
00108 f = cos(M_PI * a / (double)(2 * n));
00109 sum += f * in[k];
00110 }
00111 out[i] = -sum;
00112 }
00113 }
00114
00115
00116 void mdct_ref(float *output, float *input, int nbits)
00117 {
00118 int n = 1<<nbits;
00119 int k, i;
00120 double a, s;
00121
00122
00123 for(k=0;k<n/2;k++) {
00124 s = 0;
00125 for(i=0;i<n;i++) {
00126 a = (2*M_PI*(2*i+1+n/2)*(2*k+1) / (4 * n));
00127 s += input[i] * cos(a);
00128 }
00129 output[k] = s;
00130 }
00131 }
00132
00133
00134 float frandom(void)
00135 {
00136 return (float)((random() & 0xffff) - 32768) / 32768.0;
00137 }
00138
00139 int64_t gettime(void)
00140 {
00141 struct timeval tv;
00142 gettimeofday(&tv,NULL);
00143 return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
00144 }
00145
00146 void check_diff(float *tab1, float *tab2, int n)
00147 {
00148 int i;
00149 double max= 0;
00150 double error= 0;
00151
00152 for(i=0;i<n;i++) {
00153 double e= fabsf(tab1[i] - tab2[i]);
00154 if (e >= 1e-3) {
00155 av_log(NULL, AV_LOG_ERROR, "ERROR %d: %f %f\n",
00156 i, tab1[i], tab2[i]);
00157 }
00158 error+= e*e;
00159 if(e>max) max= e;
00160 }
00161 av_log(NULL, AV_LOG_INFO, "max:%f e:%g\n", max, sqrt(error)/n);
00162 }
00163
00164
00165 void help(void)
00166 {
00167 av_log(NULL, AV_LOG_INFO,"usage: fft-test [-h] [-s] [-i] [-n b]\n"
00168 "-h print this help\n"
00169 "-s speed test\n"
00170 "-m (I)MDCT test\n"
00171 "-i inverse transform test\n"
00172 "-n b set the transform size to 2^b\n"
00173 );
00174 exit(1);
00175 }
00176
00177
00178
00179 int main(int argc, char **argv)
00180 {
00181 FFTComplex *tab, *tab1, *tab_ref;
00182 FFTSample *tabtmp, *tab2;
00183 int it, i, c;
00184 int do_speed = 0;
00185 int do_mdct = 0;
00186 int do_inverse = 0;
00187 FFTContext s1, *s = &s1;
00188 MDCTContext m1, *m = &m1;
00189 int fft_nbits, fft_size;
00190
00191 mm_flags = 0;
00192 fft_nbits = 9;
00193 for(;;) {
00194 c = getopt(argc, argv, "hsimn:");
00195 if (c == -1)
00196 break;
00197 switch(c) {
00198 case 'h':
00199 help();
00200 break;
00201 case 's':
00202 do_speed = 1;
00203 break;
00204 case 'i':
00205 do_inverse = 1;
00206 break;
00207 case 'm':
00208 do_mdct = 1;
00209 break;
00210 case 'n':
00211 fft_nbits = atoi(optarg);
00212 break;
00213 }
00214 }
00215
00216 fft_size = 1 << fft_nbits;
00217 tab = av_malloc(fft_size * sizeof(FFTComplex));
00218 tab1 = av_malloc(fft_size * sizeof(FFTComplex));
00219 tab_ref = av_malloc(fft_size * sizeof(FFTComplex));
00220 tabtmp = av_malloc(fft_size / 2 * sizeof(FFTSample));
00221 tab2 = av_malloc(fft_size * sizeof(FFTSample));
00222
00223 if (do_mdct) {
00224 if (do_inverse)
00225 av_log(NULL, AV_LOG_INFO,"IMDCT");
00226 else
00227 av_log(NULL, AV_LOG_INFO,"MDCT");
00228 ff_mdct_init(m, fft_nbits, do_inverse);
00229 } else {
00230 if (do_inverse)
00231 av_log(NULL, AV_LOG_INFO,"IFFT");
00232 else
00233 av_log(NULL, AV_LOG_INFO,"FFT");
00234 ff_fft_init(s, fft_nbits, do_inverse);
00235 fft_ref_init(fft_nbits, do_inverse);
00236 }
00237 av_log(NULL, AV_LOG_INFO," %d test\n", fft_size);
00238
00239
00240
00241 for(i=0;i<fft_size;i++) {
00242 tab1[i].re = frandom();
00243 tab1[i].im = frandom();
00244 }
00245
00246
00247 av_log(NULL, AV_LOG_INFO,"Checking...\n");
00248
00249 if (do_mdct) {
00250 if (do_inverse) {
00251 imdct_ref((float *)tab_ref, (float *)tab1, fft_nbits);
00252 ff_imdct_calc(m, tab2, (float *)tab1, tabtmp);
00253 check_diff((float *)tab_ref, tab2, fft_size);
00254 } else {
00255 mdct_ref((float *)tab_ref, (float *)tab1, fft_nbits);
00256
00257 ff_mdct_calc(m, tab2, (float *)tab1, tabtmp);
00258
00259 check_diff((float *)tab_ref, tab2, fft_size / 2);
00260 }
00261 } else {
00262 memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
00263 ff_fft_permute(s, tab);
00264 ff_fft_calc(s, tab);
00265
00266 fft_ref(tab_ref, tab1, fft_nbits);
00267 check_diff((float *)tab_ref, (float *)tab, fft_size * 2);
00268 }
00269
00270
00271
00272 if (do_speed) {
00273 int64_t time_start, duration;
00274 int nb_its;
00275
00276 av_log(NULL, AV_LOG_INFO,"Speed test...\n");
00277
00278 nb_its = 1;
00279 for(;;) {
00280 time_start = gettime();
00281 for(it=0;it<nb_its;it++) {
00282 if (do_mdct) {
00283 if (do_inverse) {
00284 ff_imdct_calc(m, (float *)tab, (float *)tab1, tabtmp);
00285 } else {
00286 ff_mdct_calc(m, (float *)tab, (float *)tab1, tabtmp);
00287 }
00288 } else {
00289 memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
00290 ff_fft_calc(s, tab);
00291 }
00292 }
00293 duration = gettime() - time_start;
00294 if (duration >= 1000000)
00295 break;
00296 nb_its *= 2;
00297 }
00298 av_log(NULL, AV_LOG_INFO,"time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
00299 (double)duration / nb_its,
00300 (double)duration / 1000000.0,
00301 nb_its);
00302 }
00303
00304 if (do_mdct) {
00305 ff_mdct_end(m);
00306 } else {
00307 ff_fft_end(s);
00308 }
00309 return 0;
00310 }